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NUMERICAL APPROXIMATION OF BOUNDARY CONDITIONS WITH
APPLICATIONS TO INVISCID EQUATIONS OF GAS DYNAMICS
H. C. Yee

Ames Research Center

SUMMARY

A comprehensive overview of the state cof the art of well-posedness and
stability analysis of difference approximations for initial boundary value
problems of the hyperbolic type is presented. The applicability of recent.
theoretical developments to practical calculations for nonlinear gas dynamics
is examined. The one-dimensional inviscid gas-dynamics equations in
conservation-law-form are selected for numerical experiments. The class of
implicit schemes developed from linear multistep methods in ordinary differ-
ential equations is chosen and the use of linear extrapolation as an explicit
boundary scheme is emphasized. Specification of boundary data in the primitive
variables and computation in terms of the conservative variables in the
interior are discussed. Some numerical examples for the quasi-one-dimensional
nozzle are given.

1. INTRODUCTION

The proper specification of boundary conditions which yield a well-posed
problem for a partial differential equation is essential for the behavior of
the solution. Overspecification of boundary data precludes the existence of
smooth solutions except in very special unrealistic situations in which the
exact solution is known on the boundary without error. In the development of
difference approximations for mixed initial boundary value problems in the
applied science field, the boundary conditions may be quite difficult to con-
struct, and a poor choice can lead to inaccuracies and instabilities. Part of
the difficulty starts with the original differential equations where the
proper boundary conditions are not always known (nonlinear fluid dynanics
problems, for example). The problem is compounded in the difference schemes
where quite often extra boundary conditions are needed because the difference
equations are of higher order than the differential equations. Therefore, in
the study of how the extra boundary conditions affect the stability and accu-
racy of numerical schemes, we not only have to examine the difference schemes
used, but we also have to first examine the well-posedness of the original
differential equations (refs. 1-15). Thus a good understanding of the theory
of "well-posed problems"” is a necessity.

The two principal objectives of this report are to (l) present a compre-
hensive overview of the state of the art of well-posedness and of stability
analysis of difference approximations for initial boundary value problems of
the hvperbolic tyvpe, and (2) to examine the applicability of the current theorw



to the inviscid (Euler) equations of gas dynamics. (We will us he terms
"inviscid gas-dynamics equations” and "Fuler equations of gas ¢ mics" inter-

changeably.) Through an understanding of the theory, we can g some insights
into how to impose the physical boundary conditions more corre 7, and we can
be guided in the construction of stable numerical schemes for > practical

problems. In this context, "stable numerical schemes'" are sc .es that are
stable for the combined interior and boundary schemes. Read 5 who are famil-
iar with the theory and who are only interested in the appl: cion can skip

the first four subsections of the second section and can sk’ the third section
altogether.

In this report, we will discuss several ways of formulating the boundary
approximation for the one-dimensional inviscid gas-dynamics equations in con-
servative form. Since in general the Euler equations have mixed positive and
negative eigenvalues, appropriate one-sided and uncentered boundary approxima-
tions are essential. Some of the methods proposed in this report combine the
theory of Gustafsson et al. (ref. 9) with the flux-vector splitting technique
of Steger and Warming (ref. 16) to study the applicability of some uncondi-
tionally stable schemes for the one-dimensional (1-D) linearized Euler equa-
tions to their nonlinear counterpart. A few detailed numerical results for
the quasi-1-D nozzle with various inflow-outflow conditions are given. The
boundary approximations being used are one-sided spatial differencing and
linear extrapolation. It was found that we can use fairly large CFL numbers
(i.e., Courant, Fredrick, and Levy condition for the stability of differences

schemes).

The review of the theory of well-posed problems and stability analysis of
difference schemes is desirable because significant progress on a general,
workable theory for the initial boundary value problem of the hyperbolic (and
parabolic) type is quite recent. Much of it begins with the work of Kreiss
(ref. 1) published in 1970. The recent research papers on this rapidly-
developing subject are principally addressed to highly-theoretical audiences,
and there is no text or basic, up-to-date review article covering the material.
A primary purpose of this report is to collect the relevant information and to
identify some of the strengths and weaknesses of the existing theory when it
is applied to physical problems. The material is presented with the needs of
applied scientists in computational fields in mind. Consequently, basic con-
cepts and practical ideas are emphasized while exact mathematical definitioms
and theorems are minimized. Only initial boundary value problems of the
hyperbolic type are considered.

Section two of this report is a review of the state of the art of how to
impose boundary conditions in order to obtain a well-posed problem. Section
three is a comprehensive review of the current status of stability analysis of
difference approximations. For example, a recent result by Oliger (ref. 10)
provides a useful guide in the comstruction of composite stable schemes. In
the fourth section, a detailed application of these theories is given for the
one-dimensional Euler equations of gas dynamics; several numerical experiments
are included. 1In addition to the numbered references that are cited through-
out the text, a separate bibliography is provided. The bibliographic entries
are categorized according to theilr particular relevance to sections 2, 3,

and 4.
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2. WELL-POSEDNESS OF INITIAL BOUNDARY VALUE PROBLEMS (IBVP)
FOR HYPERBOLIC EQUATIONS

In this section, we summarize the status of well-posedness of initial
boundary value problems (IBVP) for hyperbolic partial differeutial equations.
A more detailed discussion of this subject is given in subsequent sectlons.
Some of the related mathematical definitions and examples are described in
appendixes A and B. Readers who are not familiar with the definitions should
refer to appendix A.

The term "well-posed,” or correctly-posed, problem appears frequently in
the literature. There are many different definitions for a well-posed partial
differential equation; for example, well-posedness in Hadamand's sense is dif-
ferent from well-posedness in Kreiss's or Petrovskii's sense. The various
definitions can be found in sources contained in the first two sections of the
Bibliography. In this report, we only consider well-posedness in Kreiss's
sense; that is, "well-posedness in the L, norm." The basic requirement for
a well-posed IBVP is to not overspecify or underspecify the boundary conditions
with given smooth initial data. In order to mathematically define a well-
posed IBVP, we have to establish the existence and uniqueness of the solution
and its continuous dependence on the initial and boundary data or to establish
the existence of certain a priori estimates or energy inequalities.

Well-posedness of the governing partial differential equation is a very
crucial consideration commonly overlooked by investigators in the field of
computations; that is, the problem is defined only when a proper set of initial
and/or boundary conditions is given. We cannot expect our difference approxi-
mations to be reasonable if they approximate a problem that does not have
reasonable solutions. In many instances, a good understanding of the theory
of well-posed problems can guide us to exclude many boundary conditionms which
might look physically reasonable.

The theory for the IBVP of 1-D systems or degenerate 1-D systems (higher
dimension systems that can be reduced to 1-D problems (ref. 17)) has been
established for some time. For higher dimension systems (with constant coef-
ficient problems), results are known for the strictly hyperbolic and the sym-
metric hyperbolic case (see '"More Than One Space Dimension," p. 11, for defini-
tion). Some partial results for the multidimensional Euler equations were
established by Oliger and Sundstrdm (ref. 6).

The following sections are summary discussions of ways to impose or to
check for well-posedness of IBVP for hyperbolic equations in the L, norm
(see appendix A). We will discuss the following types of problems:



1. 1-D scalar equation
2. 1-D system of equations
3. Several space dimensions equations

with constant coefficilents, variable coefficients, and quasilinear proper 3.
We assume that the problems we are considering have smooth initial data. 1
of the permissible ways of imposing boundary conditions in the subsequer
sections are necessary and sufficient conditions for well-posedness of * 1-D
hyperbolic equations. The discussions are based on the method of chare ris-
tics. For the more-than-one-space-dimensions problem, the analogous fc ula-
tion need not be well-posed. A proper way of getting a necessary and suffi-
clent condition in this case is by the normal mode analysis (ref. l1). One way

of getting a sufficient condition is by the energy method (refs. 4, 12).

Scalar Equation

Consider the problem

1v
Q

. ¢ real constant (la)

u +cu =20 t
x -

with initial condition

u(x,0) = f(x) (1b)

We can divide the above problem into the following three categories.

a. The Cauchy (initial value) problem (-= < x < =): The exact solution
is given by

u(xst) = £(x = ct) )

Hence the solution of (1) is constant along the characteristic lines
X~ ct =constant. There are no boundary conditions involved since -®< x< w,

b. Half-space problem (0 < x < =):




t) | t‘

git)

ul0,t)

u(x, 0) = f(x) u(x, 0) = f(x)
c>0 c<0

Figure 1.- Half-space problem (c > 0). Figure 2.- Half-space problem (¢ < 0).

If ¢ > 0, then u(x,t) is only determined in the triangular region
X - ct 20 (see fig. 1). In this case, we need a boundary condition

u(x,0) = g(t) t20

to determine the solution for x - ct < 0. If ¢ < 0, then u(x,t) is
uniquely determined by (2) and it is not appropriate to specify a boundary
condition at x = 0 (see fig. 2). Note that the solution u(x,t) is continu-
ous in a neighborhood of x - ct = 0 1if and only if f and g are continuous
and satisfy the compatibility condition

£(0) = g(0)

¢. Finite domain problem (0 £ x < 1):

t t

u(0, t) = glt)
= g(t)

u(1,t)

- X
u{x, 0) = f(x) u(x, 0) = f(x)
c>0 c<0
Figure 3.- Finite domain problem Figure 4.- Finite domain problem
(c > 0). (c < 0).
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In this case (see figs. 3 and 4), the necessaryland sufficient boundary con-
dition to produce a well-posed problem is

u(0,t) = g(t) if c >0

u(l,t) = g(t) if c <0

System of Equations

A system of first-order constant coefficient partial differential
equations

ug + Aug = 0 t20, 0<xzgl

is said to be hyperbolic if A 1s diagonalizable and with real elgenvalues.
We can divide the system of equations into the following five categories:

a. System of hyperbolic equations in diagonal form
b. System of hyperbolic equations in coupled form
c. Nonpositive definite systems

d. Variable coefficients

e, Quasi-linear systems

Each is discussed below.

System of hyperbolic equations in diagonal form:

ue + Aug =0 t20, 0=z=xz¢s1 (3)
or
utI AI 0] uxI
+ = 0
II 0 AII I
ut - ux
Here
uI = (ul, ..., uz)T
UII - (U2+1, .y U.N)T
are the dependent vector functions and
A
. 0
AI - .
0
AE
6

T ¥



are positive definite diagonal matrices. We can categorize the system further.

i) N decoupled equations with decoupled boundary conditions: The solu-
tion is uniquely determined if we specify initial values

ul(x,0) = £ (x)

utl(x,0) = 1)
and boundary conditions

ul(0,6) = glee)

uth(,e) = gMqr)

In this case, we just solve N independent scalar equations,

ii) XN decoupled equations with coupled boundary conditions: We can
couple these equations if we replace the above boundary condition by

w10,0) = 56" 0,0) + glce)

II

oo, e SIIuI(l,t) +g

(t)

where Sy, S11 are rectangular matrices with dimension & x (N - £) and
(N-1) x g, respectively. From the examination of how the direction of the
characteristic lines (and the initial data) determine the solution of the
finite domain scalar equation, we can conclude that the solution of equa-

tion (3) is again uniquely determined by conditions (4) and the initial data.
Geometrically the values of ul are transported along the characteristic to
the boundary x = 1 (see fig. 5). Then, by the boundary conditions

uII(I,t) = SIIuI(l,t) + gII(t), these values are transformed into values for
uII, which are then transported to the boundary x = 0, etc. Therefore, the
number of boundary conditions for x = 0 is equal to the number of positive
eigenvalues of the matrix A. And the number of boundary conditions for

x =1 1is equal to the number of negative eigenvalues, Thus a necessary and
sufficient condition for the IBVP of system (3) to be well-posed is to impose
the boundary conditions in the form of (4). But the analogous formulation for
problems in more than one space dimension is not necessarily well-posed. This
subject is discussed briefly in the next subsection.



DETERMINED BY
ulto, v
DETERMINED BY
u “(1, t)

DETERMINED BY

DETERMINED BY [ THE INITIAL DATA

THE INITIAL DATA

u(x, 0) = f(x)

Figure 5.- Coupled boundary conditions.

System of hyperbolic equatioms of coupled form: In most applications, the
system of differential equations is coupled

u, +Au, =0 t>20, 0<xc<1

where A 1s assumed to be a constant matrix which can be diagonalized by a
transformation matrix T.

TTIAT = A
where A has the same form as (3) (or we can rearrange A in order to have
the same form as (3)). For x = 0, the boundary conditions consist of £
linzar relations among the components of u, that is, in matrix form

Lu(0,t) = g(t) (5)

where L is an £ x N matrix. Recall that £ 1is the number of positive
eigenvalues of A. Let the characteristic variables be defined by

w =T Iy

Then w 1is the solution of equation (3), and the problem is well-posed if the
boundary condition

LTw(0,t) = g(t)
at x =0, and the similar boundary condition at x = 1, can be written in the

form (4). Here, the rank of L must be equal to the number of positive
eigenvalues of A at x = 0. Therefore, any boundary conditions specified



for the original system, must be transformable to boundary conditions of the
form (4).

Nonpositive definite systems: If AL or AT are not positive definite,
then the components uJ(x,t) corresponding to Xj = 0 must be considered as
outgoing variables and will be included in ull “for x = 0 and in ul for
x = 1. (Variables associated with negative eigenvalues are termed as outgoing
variables, and variables associated with positive eigenvalues are termed as
incoming variables for the left boundary.) Since the characteristic is verti-
cal, the solution along this characteristic is determined by the initial con-
dition., Therefore, our discussion can assume that AL > 0 for x =0 and
ML >0 for x =1. That is, we should not specify the corresponding jth
boundary condition with respect to Ay = 0.

An example of a well-posed system of hyperbolic equations (from Kreiss
and Oliger, ref. 2) follows. Consider

c 0 0
t20,
A=-10 c 1
0<x=z<1

The eigenvalues, Aj of A, are
A, = -c
A, = -(c + 1)
Ay = =(c-1)
Assume O < c <1, then A has one positive and two negative eigenvalues.
Therefore, we have to specify one boundary condition at x = 0 and two
boundary conditions at x = 1,
Let us consider the boundary conditions
u, (0,t) =0
ul(lot) =0 (6)
us(l,t) =0
and check whether (6) produces a well-posed problem. That is, we have to show

that these conditions are, after transformation, of the form (4). The trans-
formation T that diagonalizes A 1is

1 0 o0 1 o0 0
- -1 . 1 1
T o 1 194, T 0 5 5
1 1
o 1 -1 0 5 -3



and (6) becomes
w3(0,t) = w,(0,t)
w,(1,t) = 0
w,(l,t) = w,(1,t)

Here

and

The above equations are obviously of the form of equation (4).

Variable coefficients:

u + A(x,t)ux =0 t220, 0<xx<1

For every fixed t = t,, the form of the well-posed boundary conditions at the
boundaries x = 0 and x = 1 is determined by the systems with constant
coefficients

ve + A(O,to)vx = 0
we + A(l,to)wx = 0

respectively. This is the so-called "freezing" method. Note that the theory
does not cover the case when an eigenvalue of A(0,t) or A(l,t) changes sign
in the time interval of interest. Therefore, any eigenvalue of A(Q,t) or
A(l,t) has to remain the same sign over the time interval of interest if the
current theory is to be applied.

Quasilinear systems:

u, + A(u,x,t)u, =0 (7

Assume A(u,x,t) is a smooth function of the arguments u, x, and t, and that
u can be represented as

10
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u(x,t) = U(x,t) + d(x,t)

where U(x,t) represents a known smooth solution and @#i(x,t) a small perturba-
tion. Linearizing equation (7) with respect to u(x,t) gives us a linear
system

~

4, + A(U,x,t)ﬁx = B(U,x,t)d + F(U,x,t)

The boundary conditions for the well-posed problem are determined by A(U,x,t)
which is discussed in the variable coefficient case. The matrix B(U,x,t) only
affects the initial conditions and F 1s the nonhomogeneous part of the
equations.

More Than One Space Dimension

Half-space scalar problems (x > 0, —®» < y < =)

up + au, + buy =0 x20, <y<=® t2>20

u(x,y,0) = f(x,y) a, b real

(8)

The solution of (8) is
u(x,y,t) = f(x - at, y ~ bt)

If a < 0, then u(x,y,t) is completely determined by f. If a > 0 then we
have to specify boundary values

u(OQY:t) - g(y!t)

Again, the sign of "a" determines whether we need to impose boundary values.
The additional space dimension y does not interfere with the above boundary
condition, since the y domain {s -=» <y < =,

Bounded region (scalar problem): Consider equation (8) in a closed bounded
region Q with smooth boundary 3Q.

Y
r
o)
=~ \*
b1Y

11



Let (x*,y*) be a point on 23Q. The boundary data which should be specified at

(x*,y*) are again determined by the direction of the characteristic at t
point. That is, we have to pointwise map the boundary onto the tangen .ane
(n,t). This can be formalized by introducing a new coordinate system 1

origin (x*,y*) and axes directed as the tangent T and the internal r -al n
X = (x - x*)cos 6 - (y - y*)sin 6
§ = (x - x*)sin 6 + (y - y*)cos b

where 6 1is the angle between the y and v axis. The new transfor ed equa-
tion has the form

u, + dug + Eu? =0 20, »<§<o, t >0
where

d = acog § -b sin 8

b=asin 68+ b cos 6
The sign of & determines whether we need to specify boundary data at (x*,y*),

More-than-one-space-dimension system of equations: The form of the
necessary and sufficient conditions for well-posed problems for the 1-D system
only give necessary conditions for their multidimension counterpart. In order
to obtain necessary and sufficient conditions; we have to resort to normal-
mode analysis (see appendix A for definition) and Laplace transform (refs. 1-3)
types of approach. Known theory by the normal mode analysis is only for
strictly hyperbolic systems and symmetric hyperbolic systems.

Consider a first-order system in two space dimension;r
up +Au, +Buy =0 x20,-2<y<w, t20

with congtant coefficient matrices A and B with dimension N x N. The sys-
tem is hyperbolic if for all real w,, w, with wlz + wzz = 1, there is a
nonsingular transformation T = T(w;, w,) for which both T and T™! are
uniformly bounded such that

A
Ay

T(w,A + w,B)T"* =

0 ’ lN
and 1y are real. If all the XAy are distinct, the system is strictly
hyperbolic. If the matrices A and B are both symmetric, then we call the

system symmetric hyperbolic. We remark that the 2-D and 3-D inviscid gas-
dynamics equations are not strictly hyperbolic.

12
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We will not discuss the normal mode analysis method here; interested

readers are referred to Kreiss's original paper.

Here, we want to discuss the

example that Kreiss and Oliger (ref. 2) and Kreiss (ref. 3) have used to

1llustrate the insufficiency of the method of characteristics.

Kreiss has

considered the linearized shallow-water equations

w, + Aw, + Bw, = 0

t y =
where
ug 0 1
A= 0 u, 0
1 0 U,
v, 0 0
B = 0 Vo 1
0 1 Vo
u
W = v
¢
Then the matrix A has

have to be described at x = 0.

v
Bu + a¢
Choosing different values of

arbitrarily fast with time,
or (3) that are smooth and well-behaved.

0

Y

x20, ~»<y<®, t>0

two positive eigenvalues and two boundary conditions
Kreiss used boundary conditions of the form

«,8, the system can have solutions (1) that grow
(2) that have too
The

much reflection at the boundary,
following are his findings:

situation (3) occurs

i} For a < -1, 28 =1, situation (1) occurs
ii) For B8 =0, a =1, situation (2) occurs
iii) For R =1, a =0, and a =R =1

For

problems in several space dimensions that have smooth boundaries and

smooth coefficients, Majda and Osher (ref. 5) showed that we only need to look
at the family of frozen constant-coefficient problems on half-spaces obtained
by locally mapping the boundary onto the tangent plane at each point of the
boundary, freezing the coefficients locally and disregarding the rest of the

boundary.
of this family of problems is well-posed.

13
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Gas-Dynamics Problems

For the inviscid systems with smooth solutions or problems with low
Reynolds number, Oliger and Sunstr8m (ref. 6) and Oliger (ref. 7) have est
lished conditions for well-posedness of multidimensional problems. For s
sonic inflow problems this set of admissible conditions, with a few excej ns,
is of the form similar to (5) with almost full nonzero entries for L. = =t
means we have to impose a set of conditions that are linear combinationes the
physical variables instead of the physical variables themselves. But, i
physical reasons, we can only specify boundary data that are measurable. In
this case, most of the admissible boundary conditions for subsonic inflow
problems do not have physical significance or are not measurable quantities.
For example, specifying pressure for subsonic inflow is very desirable physi-
cally, but theoretically the solution results in continued loss of smoothness
globally. The most physically well-posed boundary conditions they have shown
are when all of the velocity components along with either the density or the
temperature are specified. By using the method of characteristics or the
normal mode analysis, the 1-D inviscid gas-dynamics equations possess some
" features that their higher dimensional counterparts do not have; that is,
there are boundary conditions that are well-posed for the 1-D Euler equation
but are not well-posed for the 2-D and 3-D case. This 1-D case is discussed
in more detail in the next section.

One-Dimensional Inviscid Equations of Gas Dynamics

In one spatial dimension, the inviscid equations of gas dynamics can be
written in the conservative form as

where
o
U=1m
e

are the conservative variables and
m
F = m2/p + p
(e + p)m/p

is the flux vectéf.;;;& m = pu. The ﬁfimitive variables (denoted by U) are
the density p, the velocity u, and the pressure p. The total energy per
unit volume, e, is defined as

14




e = pe + pu?/2

with € as the internal energy per unit mass. The pressure p for a perfect
gas is defined as

p=(y - D[e - m?/2p]

where vy 1s the ratio of specific heats. We can write equation (9) in quasi-
linear nonconservative form as

3U 93U
SE-+ A = = ( (10)
with
0 1 0
3F 2
A = (;U)= (v - 3 5 (3 - Nu y -1

_y.3_yeu ye _ 3(y - Du’
(v = Du 5 5 3 Yu

The nonconservative primitive variable form of the equation is

Ul ~ 3U _
‘a—t+Aax-0 (1)
where
A =M 'AM
1 0 0
Ml = —u 1 0
p P
v — 1Du?
L=Du a-ne ¢ -D
and
o]
ﬂ: u =M_lf—U
ot d
P t
30 _ o1 U
x - ax
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We can freeze system (l1) (assume constant values of A= Eo) (notice t.. . we
do not have to freeze the coefficient before getting into this form; tt

freezing of the coefficient is for later analysis) and transform (11) >}
1 3ﬁ -13 173
T Tt + T A TT U, =0 (12)
where
u, 0 0
-1 Ypo
T "AT = 0 u, + ¢, 0 . C, = 'p—o-
0 0 Uy ~ C4
and . '
N J— 4
o
= o L L
VZ /fboco
o =L 1
2 Y20,c,

with W as the characteristic variables
Wwa=T0
and u,, ¢, and p, are the "frozen coefficient" values or, numerically, the

values at a given time-step and grid point. System (12) is transformed into
the following characteristic form

u, 0 0
W awW
3_t+ 0 u°+C° 0 E{-'O
0 0 u, = ¢

On the other hand, we can locally linearize system (l1) into

-g-‘tl + AU L+ BT + F(Uq,x,8) =0 - 13

where U = U, + U, and U, represents a smooth solution and U is a small
perturbation This 1ocal linearization of (11) is for checking the well-
posedness of boundary conditions. The boundary conditions are then determined
by A[Ug(x,t)]; that is, the form of the boundary conditions at the boundaries,
say, for fixed t = t,, 0 < x < 1, are determined by the systems with constant
coefficients )

v

3t + A[U,(0,t )] = 0 at x =0 (14)
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M4 AlU ()] = =0 at x =1 (15)
But if we know the type of inflow-outflow conditions beforehand, there is a
very simple way of checking the well-posedness (instead of egs. (l4) and (15))
once a given set of "analytical boundary conditions" are proposed. (We intro-
duce the term "analytical boundary conditions" as the boundary conditions that
are required for the partial differential equations, so that the reader will
not be confused with the term "numerical boundary conditions" that are required
for the finite difference equations but not the differential equations.) The
following is a summary of the conditions for well-posedness; refer to appen-
dix B for a detailed derivation. 1In the following, we use kij and tj3 as

the 4ith row and jth column of the matrices M™iT™!  and T'l, respectively,
where M~™! and T™! are defined as before (with frozen coefficient). The
boundary is assumed to be at the left of the domain and the flow direction is
from left to right. The gi's and §i's are given values.

Subsonic inflow O < u < c: There are two positive eigenvalues of A. We
require two analytical boundary conditions. The necessary and sufficient con-
ditions for well-posedness are as follows.

Conservative form: Impose any pair
o P m
m e e

ky,p + k;,m + ke =g, (t)

or impose

kyp tk,,m+ ke =g,(t)

Non conservative form: Must impose p, that is, we have to impose
p p u
l or I but not ‘
u p P

g, (t)

or impose

tllo + tlzu + tlsp

t,,° + tzzu + t23p gz(t)

Subsonic outflow (0 > u > -¢): There is one positive eigenvalue. We
require one analytical boundary condition. The necessary and sufficient con-
ditions for well-posedness, for either the conservative or nonconservative
form, are as follows: Impose any one of the variables or impose
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k,,p + kzzm + kzae = gz(t)

for the conservative form, or impose
tr1p + tyu + to3p = éz(t)

for the nonconservative form.

Supersonic inflow u > c: There are three positive eigenvalues. We
require three analytical boundary conditions.

Supersonic outflow u < -c: There is no positive eigenvalue. Therefore
we may not impose any analytical boundary condition.

3. STABLE DIFFERENCE APPROXIMATIONS FOR HYPERBOLIC INITIAL
BOUNDARY VALUE PROBLEMS (IBVP) IN A FINITE DOMAIN

There are essentially three main considerations in studying approximate
solutions to the initial boundary value problems (IBVP): (1) well-posedness
of the original partial differential equations (PDE); (2) the method of con-
structing extra boundary conditions required for the finite difference equa-
tions (FDE) but not the PDE; and (3) the stability and accuracy of the FDE.

In this section, we will review some of the well-known theory on stability
analysis for IBVP, and list some of the commonly used stable schemes (stable
for the combined interior and boundary schemes). The subject of accuracy will
not be addressed here. The reader should refer to Gustafsson (refs 18, 19),
Varah (ref. 20), Sk8llermo (refs. 21, 22), and Sloan (ref. 23) for more detail.
The major result for accuracy analysis is due to Gustafsson (refs. 18, 19),
who proved that boundary schemes can be at most one order lower than the
interior schemes, without loss of global accuracy.

The treatment of difference approximations relating to Cauchy (initial
value) problems of the hyperbolic type is quite well established. On the
other hand, the treatment of mixed IBVP is considerably less well established.
So far, the boundary conditions are quite difficult to construct and a poor
choice can lead to inaccuracies and instabilities. The stability theory for
difference approximations of the IBVP is really only complete for one space
dimension, although this theory is essentially sufficient if the approximations
are dissipative in the tangential directions (ref. 4) for multidimensional
problems. For a one-space-dimension variable coefficient or quasi-linear sys-
tem of hyperbolic equations with smooth solution (no shocks), the theor 1is
well established. Care is needed to avoid exponential growth due to im; per
boundary extrapolation (refs. 9, 24). Recently Oliger (ref., 10) develor an
easy way of constructing stable boundary schemes for the 1-D scalar prob
For problems of higher dimension, little is known except for problems wi:
smooth boundaries, constant coefficients, and strictly hyperbolic cases.

In the study of how boundary approximations affect the stability of gas-
dynamics equations, rigorous stability analyses have only been applied to 1-D
and 2-D scalar equations with variable coefficients or quasi-linear property,
or to systems of equations with constant coefficients. Boundary approximations
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for problems with open boundaries and for viscous fluids at high Reynolds num-
bers have not been studied sufficiently. Boundary approximations for factored
or splitted implicit methods have not been analyzed. Crandall and Majda
(ref. 25) have developed a complete treatment of the stability and convergence
properties for scalar conservation laws in several space variables. Their
method is a conservation-form, monotone difference approximation. Many inves-
tigators have applied various boundary approximations to the nonconservative
form of the nonlinear system and have compared the results with experimental
data (see the Bibliography: Fluid Dynamics). Coughran (ref. 26) has devised
a numerical method based on normal mode analysis (defined in appendix C) to
study stable boundary schemes for the 1-D Euler equations. The following is a
summary of the recent developments of currently available touls for stability
analysis — concentrating on the more fundamental aspects of the subject, with
a more detailed description of the theory for one space dimension. All of the
initial data that we use throughout the report are assumed to be
square-integrable.

Fundamental Concepts

In order to explain some of the difficulties, let us consider the differ-
ential equation

0 x>0, t >0

X_ -—

u(x,0) f(x)

[~
[

t

=]

I

(16)

From the well-posedness of the problem, we know that no boundary conditions
should be specified for x =0, t > 0., If we want to solve equation (16),
using some finite difference scheme, we need information about u at the
"numerical boundary" x = 0, unless we use appropriate one-sided spatial dif-
ferencing. For convenience, we will call the imposed boundary condition the
"analytical boundary condition' and the extra boundary condition needed for
the difference approximation the '"numerical boundary condition."

Let us say we want to solve the above problem using the leap-frog scheme

n+l _  n-1 At n _n
vj = vj + A (vj+1 Vj_l) (17)

where viB = v(jix, nAt) denotes the numerical solution of u. We assume that
Lt/ix < i; that is, equation (17) is a stable approximation for the Cauchy
problem. We need an additional equation for v(0O,t). Let us overspecify
v(0,t) as

v(0,t) = g(t)

In general this overspecification will destroy the convergence. The only
exception is the case in which v (0,t) = u(0,t), where u(0,t) denotes the
solution at the boundary. But normally, we would not know about the exact
solution. Kreiss and Lungvist (ref. 27) and Gustafsson and Kreiss (ref. 17)
have shown that "inexact' overspecification of boundary conditions leads to
oscillatory solutions for this type of scheme (centered scheme, nondissipative).
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Therefore, one needs to be very careful when overspecifying boundary cor
tions. The solution will look nicer if the approximation is dissipatiwv

because the oscillations will be damped. However, near the boundary th rors
are quite serious. 1If one considers a system of equations, this error be
propagated into the interior of the region by the ingoing characterist- of
the coupled variables, even when dissipative approximations are used. e

stable way of handling von is

n n-1
Vo * V3

Another is

N o yB-l _ 0-2

v 2

o

To illustrate another difficulty, let us consider

u %- 1 u
= -1<x<1l, t >0
1 E v
/e 2 X
u(x,0) = £, (x)

v(x,0) = £,(x)

u(-1,t)

8, (t)

u(l,t)

g, (t)

where the f4's and gy's are square-integrable. From the method of charac-
teristics or normal-mode analysis, it can be shown that this problem is well-
posed. In solving the equation numerically, we generally need special differ-
ence equations to find v at both boundaries, even though analytically, the
solution is uniquely determined for the PDE. Gottlieb and Turkel (ref. 24)
have shown that if one uses the Lax-Wendroff finite difference method in the
interior and quadratic spatial extrapolation for v at the boundary, then the
resulting system is unstable. but Gustafsson et al. (ref. 9) have shown that
the same extrapolation is stable in conjunction with the Lax-Wendroff method
for scalar equations. In reference 28, Gottlieb et al. show that a straight-
forward extension of the scalar results to a system may not work. However, by
proper use of the characteristic variable at the boundaries, they demonstrate
how the results of the scalar equation can be extended to a system. They show
(in ref. 28) that by using quadratic spatial extrapolation for the appropriate
characteristic variables, the revised method is stable. This is sometimes
called the "characteristic stability theorem.”
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Overview and Development of Stability Theory

For a one-space-dimension linear constant coefficient system, we can
divide difference methods into two classes — those that belong to the "method
of lines'" approach and those that do not. The method of lines uses a finite-
difference approximation in space and an ODE (ordinary differential equation)
solver in time. TFor the methed _of lines approach, the stability of some of
the popular schemes, like the central, forward, and backward spatial differ-
encing schemes, coupled with simple boundary approximations was analyzed by
Gary (ref. 29) (the matrix method), and by Dahlquist (ref. 30) (the positive
real-function approach). In appendix D, we discuss the stability analysis of
Gary and Dahlquist. They only showed the stability of the method for fixed
Ax; that is, they did not show stability in the usual sense. 1In order to
satisfy the definition of stability, these methods involve the additional
analysis of infinite dimension matrices.

For the approach that is not a method of lines approach, the simplest
heuristic condition for stability was discussed by Trapp and Ramshaw (ref. 11).
Their analysis used the interior as well as the boundary approximation to do a
related Cauchy problem by the Fourier method (Von Neumann). An interior or
boundary approximation is said to be Cauchy stable if it is stable for the
related Cauchy problem (the related initial value problem, i.e., the domain
for 1-D is -» < x < =), They claimed that the minimum of the related Cauchy
stability bound for the interior and the boundary can be used as the stability
bound of the entire problem. But this heuristic approach does not provide
sufficient conditions or proper hypotheses for stability of the IBVP.

The most rigorous classical approach to the stability bound is the energy
method. It is a powerful tool in dealing with certain particular equations
or particular classes of equations (refs. 3, 6, 12). It can become rather
complicated or tricky to apply, but it can deal effectively with boundary con-
ditions and handles variable coefficients easily. However, it does not give
necessary and sufficient conditions.

A more unified approach to stability theory is due to Kreiss (ref. 8),
and to Gustafsson et al. (ref. 9). It is sometimes called the normal-mode
analysis. Strikwerda (ref. 31) has applied this theory for the method of lines
approach. Godunov and Ryabenkii, whose work is discussed in reference 12,
first gave necessary stability conditions for 1-D problems by considering
modes of the form u;® ~ «ud (n - time step index, j - space mesh point
index), where |u| <"1 and j counts mesh points away from the boundary. Kreiss
(ref. 8) and Gustafsson et al. (ref. 9) have greatly refined the approach,
giving only mildly stricter conditions which are necessary and sufficient for
stability. However, the analysis is more complex than that for the interior
(i.e., the Cauchy problem). There are some important simple cases that have
been studied in detail by this method, especially for dissipative approxima-
tions. This theory is a posteriori in nature. Given a difference method, we
can use this theory to determine whether the method is stable; but the stabil-
ity criteria are often very difficult to verify. An example of how this theory
applies to the first-order hyperbolic scalar equation with the simple vell-
known difference approximations can be found in appendix C. Recently, Oliger
(ref. 10) gave sufficient stability conditions that are very easy to check.
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A detailed discussion of the related theory is presented in appendix E. ese

conditions can be used to guide us in the construction of stable methoc T
the initial boundary value problems. In order to make the development - =
understandable, we use (in appendix E) the case of a strictly hyperbol 7S~
tem with constant coefficients and coupled boundary conditions that ar :11-~

posed. Then we discuss how we can arrive at the point at which it is .-
necessary to consider anything more complex than a single scalar equr a for
each transformed variable. The stability analysis of this scalar eq Ion in
a finite domain 1s equivalent to the analysis of two related quarter ane
problems. We then proceed to discuss the way to construct stable schicmes.

The main assumption of the theory for constructing stable schemes is that the
interior and boundary approximations are Cauchy stable and at least one of the
approximations is dissipative. A point of caution — the sufficient condition
does not guarantee sharp limits for conditionally stable methods.

Some Stable Boundary Schemes (for Right Quarter Plane Problem,
i.e., x > 0)

The following are some popular boundary schemes.

Extrapolation:
vt o ot (18a)
vg+1 = ZV?+1 - vg+1 (18b)
1
vit: = v, " (18¢c)
n+1 n n-1i
vy = 2v," - v, (184d)

One-sided scheme:

n n
v -V
1 o
n+1 _ n _
Vo =V, +At( Ax )

Box scheme:

. v?+1 - vg+l v,® - von
vt 4+ vt pe | ———— )= v P+ v P At | ————

Ax Ax

By using the normal-mode analysis (ref. 9), it can be shown that using the
boundary schemes ((18a), (18b)), the one-sided scheme and the box scheme,
together with the Lax-Wendroff or the Crank-Nicholson method, produces stable
 schemes for the right quarter-plane model problem:

(19)

U - uy = 0 x20,t 20
u(x,0) = £(x)
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Extrapolation at the same time level ((18a), (18b)) (spatial extrapolation) is
not a stable process for the leap-frog scheme. For leap-frog types of schemes,
we have to use (18c) and (18d), the one-sided scheme, or the box scheme, For
predictor corrector schemes, like that of Richtmyer and Morton (ref. 12), or
the MacCormick scheme (for linear constant coefficient, these two methods are
identical) there are intermediate steps involved; Gottlieb and Turkel (ref. 24)
have studied these schemes in detail. They have shown that spatial extrapola-
tion ((18a), (18b)) and the one-sided boundary schemes are good choices.

Now, we consider the class of interior schemes that evolves from linear
multistep methods in ordinary differential equations (ref. 32). For model

equation (19) with central spatial differencing, this class of schemes is of
the form

uf -l
o (B)y,” = -m(a)(LmJ’—l) (20)

Here E 1is the shift operator defined by

and p and ¢ are polynomials defined by

P(EY = (L + £)E* - (1 + 28)E + ¢

o(E) = 8E2 + (1 - 8 + ¢)E - ¢

The notation is consistent with that for linear multistep methods for
ordinary differential equations and ¢ (E) should not be confused with density.
Some of the well-known methods (in time) belonging to this class are listed
in table 1.

TABLE 1.- PARTIAL LISTING OF LINEAR MULTISTEP

METHODS
—
Method 3 8 ¢
;1. Backward Euler 0 1 0
r 2. Two-step backward Euler -1/2 1 0
3. Trapezoidal (Crank-Nicholson) 0 1/2 0]
i 4. Backward differentiation 1/2 1 0
i 5. Adams 0 3/4 =~1/4
i 6. Lees -1/2  1/3 -1/3
i 7. Two-step trapezoidal -1/2 1/2 =-1/2
! 8. A-contractive -1/6 5/9 -2/9
' 9, Leap-frog -1/2 0 0
ilo. Milne ' -1/2  1/6 -1/6
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The first eight methods are unconditionally stable for the Cauchy problem and
the remaining ones are conditionally stable. For the class of all two-step
methods that are at least second-order time accurate, the parameters (8,£,¢)
are related by (ref. 32)

¢ =& -6+ 1/2

The class of all third-order methods (in time) is obtained by imposing the
additional condition

g =26 -5/6
There is a unique fourth-order method, specified by
8 =-¢=-£/3=1/6

which 1s called Milne's method. Asume XA = (At/2Ax) is chosen such that the
method being discussed is stable for the related Cauchy problem. That is,
equation (20) with j =0, *1, ¥2, . . ., 1s stable. Gustafsson and Oliger
(ref. 33) have proved the following results:

I. 1f the boundary extrapolation ((18a) and (18b)) is used with the
method (20) in table 1, then the resulting methods are all stable for the

initial boundary value problem (19) except for the leap-frog and Milne methods.

II. If the boundary extrapolation (18a) and (18b) 1s used with the
method (20) in table 1, then the resulting methods are all stable for the
initial boundary value problem (19) except for the two-step backward Euler,
Lees, and two-step trapezoidal methods. ’ ’

All of the numerical schemes (interior + boundary) that we are going to
study in the next section are mainly implicit schemes. For the model equa-
tion (19), these schemes are unconditionally stable. One of the schemes is
the backward Euler method in equations (20) and (18b).

Stability Analysis of a Finite Domain
Consider the scalar hyperbolic equation

‘up +cuy =0 0<x=<1l,t20 (21)

with initial condition u(x,0) = f(x). From the well-posedness of the problem
(ref. 1), we have to specify analytically a boundary condition at the right
boundary x = 1, when c¢ 1is negative, or at the left boundary x = 0, when

¢ 1is positive. Hence, in addition to equation (21) and the initial data, we
specify boundary conditions

u(l,t) = g;(t) if c <0
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or
u(0,t) = g, (t) if c >0

Let us assume c < 0. From a theorem of Gustafsson et al. (ref. 9), the
stability of a difference approximation for the initial boundary value prob-
lem (21) on 0 < x £ 1 is equivalent to the stability of two related quarter-
plane problems. The related right and left quarter-plane problems are defined
as

X

u, +cu, =0 0 g x<w, t 20
c <0 } (22)
u(x,0) = £(x)
ue t+cu, = 0 -0 < x <1, t 20
c <0
u(x,0) = £(x) ' (23)
u(l,t) = g,(¢)

respectively. If only two- and three-point schemes are considered, then the
stability analysis of the IBVP associated with (3.6) is transferred to the
right quarter-plane problem (22). The stability of the left quarter-plane
problem (3.8) reduces to the stability of a Cauchy problem.

4, APPLICATIONS TO THE 1-D INVISCID EQUATIONS OF GAS DYNAMICS

From the computational point of view, the unsteady inviscid gas-dynamics
equations (Euler equations) in conservation law form have the following
properties:

a. They are a quasi-linear hyperbolic system.

b. In general, the Jacobian of the flux vector consists of mixed posi-
tive and negative eigenvalues (characteristic speed).

c. The flux vectors of the Euler equations are homogeneous functions of
degree one in the dependent variables.

d. The homogeneous properties provide a formal procedure for decomposing
the flux vectors into subvectors, each of which depends on eigenvalues of the
same sign (flux-vector splitting (ref. 16). Consequently, one-sided spatial
difference operators can be used to construct a dissipative scheme.

There are essentially two popular forms of the Euler equations being
used in the computational fluid dynamics field: the conservative form (9) and
the nonconservative form (11). Mathematically they are equivalent, but from
the computational point of view they produce different solutions, if the same
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numerical scheme is applied on the two forms. The study of well-posedness and
stability of difference approximations is easier using the nonconservative
form. Most of the existing theory and applications of the theory on the above
studies use the nonconservative form. Recently, the development of computa-
tional methods utilizing one-sided differencing gained popularity. Some of

the one-sided differencing schemes are those of Godunov (ref. 34), Steger and
Warming (ref. 16), Engquist and Osher (ref. 35), Roe (ref. 36), Carver

(ref. 37), and Lax and Harten (private communication). At this time, there are
no published results comparing the above one-sided differencing schemes, but
some are more difficult to use than the others. The flux vector splitting
method 1s useful for the application of a one-sided dissipative scheme on the
conservative form, since the method is very simple to use and provides a proper
way of handling the inflow-outflow boundary efficiently. For example, we can
apply the one-sided difference operators on the split-flux subvectors over the
interior and boundary points or, we can apply the one-sided difference opera-
tors on the split-flux subvector over the boundary points only.

We are going to discuss the stability of a few numerical schemes for the
1-D Euler equations. Stability analysis is based on local linearization and
solutions are assumed to be smooth near the boundaries. The various methods
of handling the numerical boundary will be discussed briefly, but the method
of linear extrapolation in the characteristic variables will be the main topic.
Some numerical solutions of the quasi-~1-D nozzle problem will be used to illus-
trate the commonly discussed issues; for example, explicit versus implicit
boundary schemes, unconditionally stable schemes, and underspecification or
overspecification of boundary conditions.

Flux-Vector Splitting

As discussed earlier, the nonlinear flux vector F(U) is a homogenous
function of degree one in U; that is F(aU) = aoF(U). By application of
Euler's theorem on homogenous functioms, it follows that

oF

F=AU= 30

U

F can be split into two parts as (ref. 16)
F=F +F
where F+ corresponds to the subvector associated with the positive eigen-
values At of A, and F~ corresponds to the negative eigenvalues A™.
Therefore
F=F +F = @"+a7u

with

Q = MT , Q~t =T7iQ!

At = qate~t , AT =qaTQ7? (24)

and matrices M~! and T~! are defined in section 2.
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2ya + ¢ - u

F'o= 20_7 2(y - Du? + (u + ¢)? (25)
Cqyad L fu+ e (3= y)(u+ )
(v = Du’ + > + Ty = 1)
u-c
F o= ;—Y (u - c)? (26)
(w-¢)°_ B3-v -
2 2y - 1)
For u > ¢, we have
FF=F, F =0
The diagonal matrices A+, AT are given by
u + ju
) 0 0
Wt 0 u+c+2!u+c‘ 0 ’
u-c + Iu - c!
0 0 2
u —2 u 0 0
AT = 0 u+c-lu+c] 0
u-c- |u-c|
0 0 >

Difference Approximations of the Inviscid Equations
of Gas Dynamics

By adopting the notation of Warming and Beam (ref. 38) and of Beam and
Warming (ref. 32), the 1-D system of inviscid gas-dynamics equations can be
approximated by a simple generalized three-level time differencing in the
£ (E) form as

2

n
% A“)o(E)U“ = -At]o(E) - wp(E)](%g) (27)

(I + wAt
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(Note: [I + wat(3/3x)AR]p(E)U = p(E)UR + wAt{3[APp(E)UP]}/5%.) The param-
eter w =[6/(1+£)] is determined by the particular time-differencing approxi-
mation used. Scheme (27) includes the following well-known implicit formulas

(see sec. 3):

E=0, 86 ='% , =0 trapezoidal (Crank-Nicholson)
E=0,08=1,4¢ =0 backward Euler

8 =1, ¢=20 backward differentiation

'l
]
|~
-

In (27), AP = A(U™), (8F/3x)T = [3F(U™)/3x]}, and UM 1is the solution at
t = nAt with AT as the time step.

There are two ways to utilize the flux-vector splitting:

a. Apply one-sided approximations on the split-flux subvector throughout
the entire computational domain of definition. (For example, use backward
spatial differences for the '"positive" subvector and forward differences for

the ""negative” subvector.)

b. Apply the one-sided approximations on the split-flux subvector on the
first and last interior points only.

If we apply the flux-vector splitting on both the interior points and
boundary points, system (27) can be expressed in the following form

[0+ woe(y ¥+ 5 ae@u® = -selo @) - o)) [(%Fx—) + (%-)] (28)

where at, AT, Ft, F~ are defined as in equations (24)-(26). One-sided
first-order backward and forward-difference operators can be used for the
spatial derivatives on the left-hand side of (28):

n
At o (B)U.™ - At p(EyUT
% (At (B)U™] j = J AXJ X 1= 4 0(ax)
_n n _n n
A, p(E)U - A7 p(E)U,
% (Aot = -1 j+1Ax . -+ 0(ax)

3

The spatial derivatives on the right of (28) can be approximated by the
first- or second-order approximations. The second-order approximations are of

the form:
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- n
40 3P - 4t 4 pt
oF = j . J_l J—Z + O(AXZ)
39X j 2A%
n IFT + 4 - "
af = ] Aj+1 J+2 + O(AXZ)
aoX J 2A%

The resulting algorithm (for the assoclated linearized Cauchy problem) is a
dissipative, unconditionally stable, second-order algorithm, if we use two-
step backward Euler time-differencing (6 =1, £ = 1/2, ¢ = 0). The solution
of (28) requires block tridiagonal inversion. We can introduce an approximate
factorization of the left-hand side of (28), and change system (28) to the
product of two operators as

n n 5 + n N n
(I + it f}—( At )(I + wht _aa; A~ )c(E)Un = -at[o(E) - wc(E)][(——“ai ) - (—i )]
(29)

The solutjion of (29) only requires block bidiagonal inversion. The sta-
bility of (29) is more difficult to analyze. We will only use form (28) for
the quasi-1-D nozzle.

Instead of using one-sided differencing throughout, we use system (27)
without splitting A and F into two parts in the interior. The spatial
derivative can be approximated by central differencing. For the first and
last computational points, we can use the form (28).

So far, stability analyses of variable coefficient or quasi-linear
hyperbolic problems are only known for scalar equations or for systems with
smooth coefficients and smooth solutions (ref. 2). For systems with nonsmooth
coefficients or solutions, nonlinear instability can oceur; for example, when
an eigenvalue changes sign. One remedy 1s to use a dissipative scheme or add
a dissipative term to the original differential equation. The one-sided
spatial difference schemes "comes" with dissipation and frequently we have no
control over it. The centered (spatial) schemes require "added" on dissipa-
tion but allow different dissipative weight treatment in different regions of
the solution. Both methods are quite popular in the computational fluid
dynamics field.

Stability Analysis

As we have discussed before, theory for stability analysis of difference
approximations for 1-D nonlinear hyperbolic equations has been established
only for schemes that are dissipative or for problems with smooth solutions.
The method of analysis depends on the '"freezing method." If we freeze (3F/3U),
then there is no distinction between the conservative and the nonconservative
form. For each x = x4, t = t, we have a system of constant coefficient
equations to analyze; that is,
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U aU
52 t AlUGxg,t)] 52 = 0 (30)

As we will see later, the analysis 1s very simple. System (30) can be decou-
pled into three scalar equations:

awl s 3w1 0\

at 1 x

awz s awz 0!

3t 2 3x (3D
3w3 N aw3 o

3t v 3% = 0

with

A, = u(xg,ty) + c(xo,to) =u, + ¢,

Ay = u(xg,ty) - c(xo,to) =u, - ¢,

Thus, at each time-step, the stability analysis consists of a pointwise
examination of equations (31). For the higher order explicit methods, it is
easier to use Oliger's method (ref. 10) than the normal-mode analysis method
to check for stability. On the surface, Oliger's sufficient condition con-
sists of two parts (assuming the combined interior and boundary schemes are
stable for the model problem).

a. Apply the interior difference scheme to (30) and do Cauchy stability
shecks for all x, that are interior points.

b. Apply the boundary difference schemes to (30) and do Cauchy stability
checks for all x, that are boundary points.

If conditione (a) and (b) pass the stability tests at each point for
every time step, what can we say about the stability of the originmal uncoupled
nonlinear system? Stability is confirmed if at least one of the ap-+~oxima-
tions is dissipative (this is a sufficient conditiom; that is, an - stable"
boundary scheme for the related Cauchy problem does not imply that com-
bined — interior plus boundary — scheme is not stable) and if the sc ions
are smooth. In the actual case, the stability checks of part (a) anc )
involve scalar equations only. For popular numerical schemes, Cauchy bl Tty
bounds are known. The major work is the testing of the values of A '
i=1, 2, 3 at each grid point and time step. This is trivial since . . };
are known. The method of normal mode analysis can follow the same appr ich,
except in this case we have a necessary and sufficient condition. But nigher
order methods are more difficult to verify. Often, we have to resort to
numerical methods of solving a set of complicated resolvent equations

30

1R



(defined in appendix C). For problems with shocks, there is no guarantee

that stability of the "freezing" family will imply stability of the original
nonlinear problem. But, usually, it is quite promising if we use a dissipative
scheme.

The Numerical Boundary Conditions

To simplify the discussion, let us assume that the spatial differencing
we are going to use will be a first-order-one-sided or central-difference
scheme, and denote the left and right boundary node index as O and J. Then
the spatial differencing of (27) and (28) on the first and last computational
points involves terms like

where E,, E;j are some known matrices determined from the previous time step,
and .UM = yftt -y, The AULD, AU are partially known from the analyti-

cal boundary condition, with the exception of supersonic inflow. A few of the
popular methods of obtaining the expression for the numerical boundary condi-

tions are by

a. Extrapolating in space or space-time (refs. 28, 39).

b. Discretizing the Riemann invariant equations (the nonlinearized form
of the characteristic equations) or the characteristic equations (12) locally
(refs. 40, 41, and J. Oliger (private communication)).

¢. Taking derivatives of the known condition in order to produce an
extra boundary condition (refs. 19, 42, and M. Hyman (private communication)).

d. Using nonreflecting boundary conditions (refs. 17, 43, 44).
e. Overspecifying the boundary conditions.

For implicit schemes, methods (a)-(d) above are quite complicated to
implement into a computer code. Method (e) is of limited usefulness since it
requires a priori knowledge of the exact solution to the difference equation
at the boundary. Method (a) has the advantage of being the easiest to use;
therefore, our study concentrates on method (a). But, as we know, extrapola-
tion procedures suffer from the disadvantage of not modeling the differential
equation (or not depending on the differential equations). However, if we use
spatial linear extrapolation together with the two ways of utilizing the flux-
vector splitting from the preceding subsection (Stability Analysis), the
spatial differencing is already tailored to the direction of the characteris-
tic curve locally. The extra unknowns that are required at the boundaries are
due to the noniterative property of the scheme and the coupling of the physi-
cal equations. Therefore, the numerical procedure for the extra unknowns at
the boundaries should not be as crucial — spatial linear extrapolation appears
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to be a good choice. As before we will use the term ''numerical boundary con-
ditions" as the extra boundary conditions that are required for the FDE but
not for the PDE, or as the extra unknowns at the boundaries due to the non-
iterative property of the scheme (local linearization).

In implementing any methods (a)-(d), there are numerous and complicated
details involved. Here, we will simply consider the spatial linear extrapola-
tion in detail. The main point of this study is to show that the use of spa-
tial linear extrapolation as boundary schemes for the implicit method (dis-
cussed in the subsection "Difference Approximations of the Inviscid Equations
of Gas Dynamics," sec. 4), is quite successful. Other comparisons of methods
and application to different types of physical problems will be reported
elsewhere (ref. 45).

Spatial Linear Extrapolation for the Numerical Boundary Conditions

For physical reasons, we sometimes prefer to specify boundary data in the
primitive variables and compute in terms of the comservative variables in the
interior. Thus the choice of variables for the analytical boundary conditions
to be imposed and numerical (or extra) boundary conditions to be extrapolated
for the conservative form (9) can be divided into the following four groups:

Group Variable Variable
(anal. B.C.) (num. B.C.)
I Conservative | Conservative
II Conservative | Characteristic
ITI Primitive Primitive
IV Primicive Characteristic

Under certain inflow-outflow combinations, not all of the above ways of
imposing analytical boundary conditions are mathematically possible (or physi-
cally desirable). 1If possible, group I 1is by far the simplest to implement
with the rest appearing in increasing order of complexity. Group IV, on the
other hand is more physically desirable and more theoretically sound (ref. 28).
Groups II and IV reduce to the scalar model hyperbolic equations for the
linearized equations of (9) and (11), respectively. We can have a whole class
of stable schemes to choose from, as discussed in section 3. This is also
true for group I in the supersonic inflow or supersonic outflow case. Now we
turn to discuss group III. For the subsonic inflow case, it has been shown by
Gustafsson and Oliger (ref. 33) that all the approximations (27) with param-
eter values in table 1 are stable, with the following boundary conditions:

n

o given

P

uon given

n

P 0= 2p1n = P;

o]

32



For the subsonic outflow case, Gustafsson and Oliger (ref. 33) also proved
that all the approximations (27) with parameter values in table 1 (except for
leap-frog and Milne) are stable, with the following ways of handling the
boundary conditions:

() u,"  given
o, = 201n _ pzn
pon = 2p" - p,"
(ii) p," siven
oon = Zan £,
uon = 2u1n - uzn

Here, we will describe the spatial linear extrapolations in the characteristic
varlables, that is, group II. Other groups can follow similar procedures.

The relation between the conservative and characteristic variables is

—ly—1 -
T '™ Ut wt

with U the vector of conservative variables, and W the vector of character-
istic variables. The procedures for group II at inflow (left boundary) will be

i) Make a first-order approximation:

=ly=1ly fay 0+ ., 0
(T™*M )o AUO QWO

i1) Reorder U," 1into subvectors (UI)On and (UII)On where (UI)On is
the "analytical" boundary condition and (UII)On is the "numerical" boundary
condition.

iii) Reorder W, ™ into subvectors (wI)o“ and (WH)On where (WI)On N
corresponds to the subvector associated with the positive eigenvalues of A
and (W I)on corresponds to the negative eigenvalues of A (for outflow right
boundary, the signs of the eigenvalues are the reverse).

iv) Reorder (T-IM_I)On and partitioned it accordingly as

(p1 P\
p3 pu
o]
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Then we have
n n
P, ©P,\" saul Wt
(P 3 P, ) (Aun) (Awn>
o o o]

Note that the delta formulation (AU) is important for step (1) t iuse of the
nonlinear relation between conservative, primitive, and charactecistic vari-
ables. Now spatial linear extrapolation in the characteristic variables means

@i'Ty = 2awtD)® - (ailD),”

This implies

I 1 IT

@.00F + P auth) M = 2¢p st + poav I
3 Y ) 3 v

n II,. n
)1 - (P3AU + P AU )2

Since P, should be nonsingular for a well-posed problem, we can rearrange
terms and obtain

(uihy ® = r auh) * + R (a0, + R, (a1)," (32)

where Ro' R;, R; are known rectangular matrices which can be evaluated from
the previous time step. (Note the mixture of dimensions in the equations.)
Similarly, the outflow numerical boundaries can be expressed as

II. n I. n n n
(AU ) SO(AU )J 7+ SI(AU)J_1 4-782(1.‘\[1)‘]_72 7 | (33)

A similar formula can be derived if we impose the analytical boundary
condition with the primitive variables (group IV)

~II, n _ = I.n =~ n, = n
(AUTT) 5" = R (A07)," + R (8U), + R, (A1),

for the inflow boundary. By imposing primitive variables as analytical bound-

ary conditions for the conservative system, group IV involves extra lineariza-

tion and extra computations. -
If instead of using linear extrapolation for the numerical boundary con-

ditions we discretize the characteristic equation and obtain an expression for

(AU ) 0. the counterpart of Ri s will be even more complicated than the

Ri S.

There are two ways to alter the existing code by using the implicit
boundary scheme?

(a) Add correction matrices like (32) and (33) onto the first and last
block rows of the block tridiagonal matrix.
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(b) Use equations like (32) and (33) as extra equations in the block tri-
diagonal matrix; that is, increase the dimension of the block tridiagonal
matrix by dim(UgIl) + dim(UJII) - dim(UOII) means the dimension of UOII. A
word of caution, the final form of the matrix might not be in block tridiagonal
form.

Some Numerical Results

The nozzles we consider are shown in figures 6 and 7 (refs. 39, 46). We
use the unsteady gas-dynamics equations to obtain the steady-state solutions
for various inflow-outflow conditions. The numerical spatial derivative
approximations for the quasi-1-D nozzle problem are summarized as follows in
table 2. The time differencing 1s the backward Euler method (high in stabil-
ity). The trapezoidal formula, although yielding greater accuracy for small
CFL numbers, results in instabilities for large CFL numbers. Additional time-
differencing approximations and numerical boundary condition procedures will
be considered in a future paper (ref, 45).

SUPERSONIC * | SUBSONIC
INFLOW OUTFLOW
, A(X) SHOCK | «
X0 ‘ : Xy

A(X) =1.398 + 0.347 » TANH (0.8 X — 4)

Figure 6.- Shubin nozzle, (ref. 46) for supersonic inflow, subsonic outflow

study.
\{\ e
: Alx) - b a—
Xgx TH Xex
— Yo
Alx) = 1+ (Agy - 1) [(Xgy - %) / Xpp) 2 X < X7h
Alx) =1+ (Agy - 1 [Ix - Xy / (Xgx - X)) 2 x> X7y

Figure 7.- Convergent-divergent nozzle (ref. 39) for subsonic inflow,
outflow study.
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TABLE 2.- NUMERICAL SCHEMES

Method ’ Interior Boundary, numerical

1 Second-order one-sided? Linear extrapolation
(flux-vector splitting)

2 First-order one-sided Linear extrapolation
(flux-vector splitting)

3 Centralb’c + spectral norm| Linear extrapolation
(equivalent to Scheme 2)
(ref. 16)
Centralb’c Linear extrapolation
Centralb + one-sided at Linear extrapolation

first and last computa-
tional points

aSecond-order for 3F'/5x and 3F /9x, but first-order
for 3AT/sx and 5A™/3x.
Fourth-order dissipation was added for the interior
scheme.
“second-order dissipation was added at the boundary
points. ’

The numerical boundary conditions are treated either explicitly (E), set
to values at previous time step (replace n by n - 1 on the right-hand side
of eqs. (32) and (33)), or implicitly (I), alteration of appropriate block
tridiagonal matrix elements.

The numerical scheme for each numerical experiment is defined by the
temporal differencing (£,6,¢), the spatial differencing (method 1, 2, 3. 4,
or 5 of table 2), the variables chosen for the boundary conditions (groups I,
II, III, or IV), and the temporal treatment of the boundary conditions
(E or I). These choices obviously provide a large array of combinations which
we must selectively sample.

Typical steady-state solutions for three different flow conditions are
shown in figures 8-10. Tables 3-8 present some of the results of numerical
stability investigations. The calculations were made with a series of fixed
CFL number and the numerical stability recorded. :

Although not extensive at this time, several general observations can be
made:

a. The results with boundary conditions I and II are very similar.
Although the solutions are slightly different in the vicinity of the shock,
the extrapolation of the conservative variables produces results that are
comparable to those obtained when the characteristic variables are extrapo-
lated (see tables 3-6).
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INFLOW:  SUPERSONIC
_|  OUTFLOW: suBsoNiC
cor — EXACT SOL
2 © © METHOD 2
3 5 CFL=5
' 400 STEP
B.C. INFLOW : p,u, p
Al OUTFLOW : p
AX =0.125
3 1 1 1 L |
0 6 8 10

Figure 8.~ Density distribution: supersonic inflow, subsonic outflow,
Shubin nozzle.

b. For some schemes (see tables 7 and 8), the explicit and implicit
treatment of the numerical boundary conditions produce similar numerical sta-
bility bounds; that 1s, implicit treatment of numerical boundary conditions is
not necessary for CFL > 1 (for some schemes).

c. Overspecification of exact boundary conditions causes no problems.
Figure 11 shows the supersonic inflow-outflow case.

d. Methods 2 and 3 of table 2 behave almost identically.

For the supersonic-subsonic problem, if we underspecify the boundary con-
dition at the outflow, that is, without specifying anything, the solution
diverges. Moreover, updating the boundary points via the delta form (32)
and (33), and then obtaining

Un+1 = AU n + U n
0 0 o}
n+1l n n

= A +

UJ UJ UJ

instead of updating the boundary points directly through the approximation

II. n I. n n n
(U7), =R, (U7}~ + RU, +R,U,

II, n _ I. n n n
¢ )J = SO(U )J + 51UJ—1 + SlUJ_2
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VELOCITY

1.2

1.0 INFLOW:  SUBSONIC
OUTFLOW: SUBSONIC

— EXACT SOL

© METHOD 5
CFL =100
5 700 STEPS
B.C. INFLOW : p,p
OUTFLOW : p
AX =0.125
4
3 1 1 1 1 1 J
0 1 2 3 4 5 6 7
X

Figure 9.- Velocity distribution: subsonic inflow, subsonic outflow,
convergent-divergent nozzle, area ratio 2:1.16,
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DENSITY

1.0

— EXACT SOL

O METHOD 4
CFL=5
1500 STEPS
B.C. INFLOW : o, p
OQUTFLOW : p

AX =0.125

SUBSONIC
SUBSONIC

INFLOW:
CUTFLOW:

10

Figure 10.- Density distribution: subsonic inflow, subsonic outflow,
convergent-divergent nozzle, area ratio 2.5:1.5.

TABLE 3.- NUMERICAL STABILITY CHART:
BOUNDARY SCHEME I, SHUBIN NOZZLE

(Boundary conditions: inflow = c¢,m,e; outflow = ;)
r : T T
| | Method | Method . Method
! CFL | ) ‘ 4 ‘ 5
L (D) Yes | (I) Yes | (I) Yes |
; : (E) Yesz (E) No  (E) Yes ;
: 5 ;(I) Yesi (1) Yes ;(I) Yes
: (E) Yes | -—- . (E) Yes
- - 1
! ! i
10 ' {I) Yes ' (I) Yes | (I) Yes
(E) Yes' -—= " (E) Yes
| i
100 I(I) No E (I) No  (I) No
(E) No — ; (E) No

Notes:

Supersonic inflow; subsonic outflow.

I
E

implicit numerical boundary condition
explicit numerical boundary condition
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TABLE 4.- NUMERICAL STABILITY CHART:
BOUNDARY SCHEME I, SHUBIN NOZZLE

(Boundary conditions: inflow =

Notes:

p,m,e; outflow =

Method Method Method
CFL 2 4 5

1 (I) Yes | (I) Yes | (I) Yes
(E) Yes | (E) Yes | (E) Yes

5 (I) Yes | (I) Yes | (I) Yes
(E) Yes| (E) No (E) Yes
10 (I) Yes | (I) Yes | (I) Yes
(E) Yes — (E) Yes

100 (I) No (I) No (I) No
(E) No -—— (E) No
Supersonic inflow; subsonic outflow.

I = implicit numerical boundary condition
E = explicit numerical boundary condition

TABLE 5.- NUMERICAL STABILITY CHART:

BOUNDARY SCHEME II, SHUBIN NOZZLE

(Boundary conditions:

Notes:

inflow = p,m,e; outflow

Method Method Method
CrL 2 Ty 5

1 (I) Yes| (I) Yes | (I) Yes
(E) Yes | (E) No (E) Yes

5 (I) Yes| (I) Yes | (1) Yes
(E) Yes - (E) Yes
10 (I) Yes | (I) Yes| (I) Yes
(E) Yes -— (E) Yes

100 (I) No (I) No (I) No
(E) No — (E) No

Supersonic inflow; subsonic outflow.

I = implicit numerical boundary condition
= explicit numerical boundary condition

E
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TABLE 6.- NUMERICAL STABILITY CHART:
BOUNDARY SCHEME II, SHUBIN NOZZLE
(Boundary conditions: inflow = p,m,e; outflow = m)

i Method Method Method

¢
FL 2 4 5

. (1) Yes | (1) Yes ! (I) Yes

: (E) Yes ! (E) No | (E) Yes

5 (1) Yes | (I) Yes | (1) Yes
1(3) Yes ——— (E) Yes

o | (I) Yes| (I) Yes!| (I) Yes
| (E) Yes -—- (E) Yes

(E) Yes | (I) No (I) No

10 (E) No —-——— (E) No

Notes: Supersonic inflow; subsonic outflow.
I = implicit numerical boundary condition
E explicit numerical boundary condition

TABLE 7.- NUMERICAL STABILITY CHART:
BOUNDARY SCHEME 1V, SHUBIN NOZZLE
(Boundary conditions: inflow = p,u,p; outflow = P)

Method Method Method Method
CFL 1 2 4 5

1 (I) Yes | (I} Yes ; (I) Yes | (I) Yes
(E) Yes | (E) Yes | (E) No (E) Yes
5 (I) No (I) Yes | (1) Yes | (I) Yes
(E) No : (E) Yes | (E) No . (E) Yes
10 o (1) Yes | (I) Yes | (1) Yes
(E) Yes | (E) No (E) Yes

(1) No (I) No (1) No

100 T (E) No -— (E) No

Notes: Supersonic inflow; subsonic outflow.
I = implicit numerical boundary condition
E = explicit numerical boundary condition
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DENSITY

TABLE 8.- NUMERICAL STABILITY CHART: BOUNDARY SCHEME IV,
CONVERGENT-DIVERGENT NOZZLE
(Boundary condition: inflow = p, p; outflow = p)

CFL Method Method Method Method
1 2 4 5

1 (1) Yes \ (I) Yes | (I) Yes

(E) Yes (E) No (E) Yes

10 (I) No (I) Yes | (I) Yes
(E) No (E) No (E) No

20 L Accuracy | (I) Yes | (I) Yes
problem | (E) No (E) No

102 —_—e (I) Yes | (I) Yes
10° o (I) Yes | (I) No
' — —

Notes: Subsonic inflow; subsonic outflow;
area ratio 2:1.16. No shock.
I = implicit numerical boundary condition;
E = explicit numerical boundary condition.

INFLOW:  SUPERSONIC
OUTFLOW: SUBSONIC

Lo — EXACT SOL

© METHOD 2
CFL=5

1000 STEPS

B.C. INFLOW : p,u,p
OUTFLOW : p,u.p

AX =0.2
L 1 1 L ] ]
6 8 10

Figure 11.- Density distribution: overspecify at outflow,
Shubin nozzle.
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where the Rj's and Si's are the same as in equations (32) and (33), produces
a solution that is not as smooth near the boundary.

The smoothing parameter for the fourth-order dissipation term for
methods (3)-(5) of table 3 are 0.5. No study has been made for varying the
smoothing parameters for different solution behavior zones,

CONCLUSIONS

A comprehensive overview of the state of the art of well-posedness and
stability analysis of FDE for IBVP of the hyperbolic type was presented. The
"freezing" theory was used as a guide to construct boundary schemes for the
1-D inviscid gas-dynamics equations. The use of primitive variables as the
analytical boundary conditions for the conservative form of the 1-D inviscid
gas-dynamics equations was formulated and then applied to the quasi-1-D nozzle
problem.

Spatial linear extrapolation as a boundary scheme can produce reasonable
steady-state solutions. It is scheme-independent, and thus provides a compact
form for computer code implementation. Added dissipation terms, the linear-
ization of the (3F/5U) matrix and ways of updating the boundary points can
affect the stability and accuracy of the solution. Future work in this area
is needed.
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APPENDIX A

DEFINITIONS AND EXAMPLES OF WELL~-POSED HYPERBOLIC

DIFFERENTIAL EQUATIONS IN "L, NORM'

Well-Posedness of Cauchy Problem

Definition A.1: The L, norm of a vector function

is defingc{ as o , .
| - © 1/2
Hu(x)H = [I U*(x)u(x)dx] .

where u* 1s the transpose and complex conjugate of u.
Consider the Cauchy problem
u, + Auy, + Bu = 0 -® < x < w, £t 2>

u(x,0) = f(x)

u(x) with -= < x < «

0
(Al)

where A and B are N x N constant matrices, and u and f are vectors with

dimension N.

Definition A.2: For all initial values f(x) with
Cauchy problem (Al) is well-posed if there are constants

[|£x)|] < =, the
k, o (independent of

f(x)) such that for all solutions and all t, there exists an estimate.

lute, )] < & € [lucx,0)]
where
® 1/2
[luGx, )] = [Jr u*(x,t)u(x,t)dx]
Example: Consider the first-order scalar equation
ut(x,t) - au(x,t) =0 -® < X < ®,

u(x,0) = £(x)

(A2)

20
, (A3)

with ||u(x,0)|] < = and known real constant a. The solution of (A3) is

u(x,t) = f£(x)e*t
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Since
luol] = [e*] {lue,0)]
the solution of (A3) satisfies (A2). Therefore (A3) is well-posed.
The definition of hyperbolic and strictly hyperbolic systems is as fol-
lows: The system (Al) is hyperbolic if A 1is diagonalizable and with real

eigenvalues. It is strictly hyperbolic if all the eigenvalues are real and
distinct.

There is a simple equivalent algebraic condition for definition (A.2) to
hold. This condition (ref. 2) is found by Fourier transforming equation (Al)
in x and studying the norm of the Fourier transformed variable. Through
this method, it can be shown that a hyperbolic system (Al) with all
“u(x,0)]] <= and B =0 are well posed.

Let us define P(iu.) = -iwA with w real. Then the algebraic condition
is: The Cauchy problem for (Al) is well-posed if and only if there are con-
stants K and o such that

t .
maxlep(l*)t < K eOLt

w

Example: For the scalar hyperbolic equation

u, + cuy 0
u(x,0) = £
with ¢ real and !lu(x,0)| < =. We have
P(ix) = -i.c

e.i“C < 1. If we take K =1, o = 0, then the algebraic condition

thus max

U

is satisfied. That is [lu(x,t)]] =[{u(x,0)||. For the hyperbolic system (Al),
the well-posed algebraic condition is immediately satisfied since there is a
unitary matrix T s.t.

TAT™! = ’ . Xj real and |T| = |T7%] =1
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Well-Posedness of Initial Boundary Value Problem (IBVP)

~ Consider the IBVP of the strictly hyperbolic system in the quarter plane
(0's x < =)

u, + Au, = F(x,t) 0 <x<a, t>0 (Ab4a)
,Q(X'o) = f(x) (A4Db)
I I1 ) .
u (0,t) = Su " (0,t) + g(t) (A4c)

where A is an N x N diagonal constant coefficient matrix with

Al o
A=
0o -all
1 0
Al = > 0
0 Al
2+1 0
AII - >0
0 AN
and
1 T II
u = (ul, e e s ug) , u = (u2+1, . uN)T

where X3, j =1, . . ., N are real and distinct, S 1is an x(N - %) matrix,
and f(x; is smooth. (It is no restriction to assume that A is in diagonal
form because the system is strictly hyperbolic and can always be written in
this form after a suitable transformation.,) For simplicity, we will consider
the homogeneous initial data u(x,0) = f(x) = 0. The assumption of homogeneous
initial data is no restriction since we can always subtract that solution of
the nonhomogeneous Cauchy (initial value) problem and obtain exactly this
situation.

Definition A.3: We will say that the quarter-plane problem (A4) with
homogeneous initial data is well-posed if the estimate

T T T
f u(x,t)|]|? dt KT(J' lg(t)]|? dt + f [|F(x,t)||? dt) (A5)
0 [

0

46

1§

S e



holds with a constant K. independent of g and F, but perhaps depending on
7. In here, the Lz norm of u(x,t) is defined as

Mu(x,t); = J' u* (x,t)ulx,t)dx
0

We can extend this definition for higher dimension systems of equations
with a slight modification. Consider the IBVP of a two-dimensional strictly
hyperbolic system (see sec. 2 for definition) in the quarter plane
Ocx<o, =<y<w)

u, + Au, + Buy = F(x,y,t) 0 s x <=
u(x,y,0) =0 -= <y < o (A6)

uF(0,y,) = sull(0,y,t) + g(y,t) t 20

where A, S, uI and uII are defined as before (with A replaced by -;A + .,B,

vhere ., and ., are real and w o, =)

Definition A.4: We will say that the quarter-plane problem (A6) is
well-posed if the estimate

T T
3 § ' e
L |,u(O,y,t‘.)Hy dt + fc ,.u(x,y,t)l,x’v dc

T T
< W ' = "Fix,y 3
< “(f ‘ g(y’t)"y dt + f ”r(...).c).,x’y dt)

holds. Here K, depends on <t but not on F and g. Where the L: noTm
are defined as

' 2 »
!]U(O’Y)t)izy = f u*(o,}',t)u(o.y,t‘d)'

&

and

2 k-] =
Hu(x.y.t)”x'y = J. J‘ u*(x,y,tdu(x,y,t)dx dy

with similar definitions for ifg(y,tﬂ!; andf!F(x,y,tﬂéx,y.

For the one-dimensional systems, we can get the same conditicns as in
definition (A3) by using the method of characteristics. This 1s not the case
for higher dimensional systems (refs. 2, 6). The applicaticn of the method of
characteristics is discussed in detail in section 2. Here we will state the
necessary and sufficient algebraic conditions for definition (A3). This is a
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simplified version of the main theorem of Kreiss (ref. l1). The theory of
Kreiss (ref. 1) treats problems in any number of space dimensions. Interested
readers should refer to reference 1 for extension to more space dimensions.

For the two-dimensional and three-dimensional quasilinear systems of inviscid
gas dynamics equations, please refer to Oliger and Sunstrdm (ref. 6) and Oliger
(ref. 7).

The so-called '"mormal-mode analysis" algebraic conditions for defini-
tion (A3) will be stated after the following brief preliminary background. Let
us Laplace transform (A4a) and (A4c) with respect to t and denote s = n + it
as the variable dual to t. We obtain
0
(A7)
) |

The symbol (°) is the Laplace transformation of the variable ( ).

su + Aﬁx =F for x

al = sall + g for «x

v

Associated with (A7) is the following eigenvalue problem. A square-
integrable function ¢(x) for 0 < x_ < o« 1is an eigenfunction of (A7) corre-
sponding to an eigenvalue s if ¢ 1is a solution of the problem

s¢ + Ab, = 0 for 0 g x < (A8)

ol = sl  for x =0 (A9)
We do not want s with n = Re(s) > 0 to be an eigenvalue of (A8) and (A9).
If this happens, ¢ is not in L; (¢ 1s not in L2 means ¢ 1is not square
integrable). Therefore, we have to decide whether s with Re(s) > 0 1is an
elgenvalue or not. Equation (A8) is an ordinary differential equation whose
general solution in L, for Re(s) > 0 can be expressed as a linear combina-
tion of ¢ linearly independent normalized eigensolutions (see Kreiss, ref. 1,
for details). That is, the general solutions in L, depend on £ free
parameters J = (g, . . ., Gz)T. Introducing the solution into (A9), we get
a linear system of equations:

R(s)g =0 , R a matrix function of s (A10)
and s 1s an eigenvalue if and only 1f
Det{R(s)] =0 ) - (All)
Kreiss has shown that Det[R(s)] is a continuous function of s for
Re(s) 2 0 and he defines s = if{ to be a generalized eigenvalue if

Det[R(ig)] = O.

Now we can state the necessary and sufficient conditions for the estimate
of type (AS) to hold. S -

Theorem A.l: The IBVP for (A4) is well-posed in L, 1if and only if the
eigenvalue problem (A8) and (A9) has no eigenvalue or generalized eigenvalue
for Re(s) 2 O.
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Next, we want to give an example to show that for a one-dimensional sys-
tem, using the method of characteristics is equivalent to Theorem A.l. Here we
assume that readers are either familiar with the subject of the method of
characteristics or will consult references 2-4 (or sec. 2) for details. Con-
sider the following quarter-plane problem for the wave equation

Ve T Wiy 0 <x<e»2, £ >0 (Al12)
with initial conditions
w(x,0) = f(x)
w (x,0) = g(x)
and boundary conditions
w(0,t) = wt(O,t) =0

We can recast the problem into a system of first-order hyperbolic form by
letting v = wy, u = Wg, z; =Vv - u, and z, =v + u. Then (Al2) becomes

zZ, 1 0\/Z,
+ =0 (Al13)
z, 0 -1/\2Z,
t X
with initial conditions
z, g - £,
= at t =0 (Al4)
z, g+ fy
and boundary conditions
Z, = -z, at x =0 (AlS)

From the method of characteristics, we can see that the initial condition (Al4)
together with the boundary condition (Al5) determine the solution of (Al3)
uniquely.

Now we turn to Theorem A.l. The general solution of the associated eigen-
value problem for (Al3) in L with Re(s) 2 0 is

¢ =0y e ¥ e (Al6)

where e; 1is the normalized eigenvector of

()
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corresponding to Re(s) > 0. The normalized eigenvector e; 1is found to be

()

Introducing (Al16) into (Al5), we get

-5X
g,e x=0 = %1 = 0 = )

Therefore, there are no non-trivial solutions in L:
problem is well-posed.
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APPENDIX B

CONDITIONS ON WELL-POSEDNESS OF THE INVISCID EQUATIONS

Freeze the coefficients of
tions (10) and (11):

e8]
[ong)

+ A

Q>
[ad

and the characteristic equation

with

or

where
ables of (Bl),
defined as

OF GAS DYNAMICS

the Jacobian matrix A and rewrite equa-

3U U
e TAR =0
3u _ e |
= =0 U =M'U
W W
a—t + A 'a—x = Q0
Ww=T"10
W =T MU

The matrices M~ ! and T~!

1 0 0
M1 = __u'i L 0
Po Po

(v = Duy?
3 (I -Yy (-1

-1
YT
el 0 L L

V2 /fboco

o L L
V2 /5boco

(B1)

(B2)

(B3)

(B4)

(B5)

U, U, W are the conservative, primitive and the characteristic vari-

(B2), and (B3), respectively. are



and wug, ¢5, P, are the values of u, c, p due to freezing of coeffic :S.
We want to discuss two sets of well-posed boundary conditions: (1) ims i

boundary conditions (case 1) that are in the form of the individual na: 1
physical variables alone, that is, the primitive or the conservative - 1£;
and (2) imposed boundary conditions (case 2) that are in the form of Lnear

combination of the physical variables, that is, a,p + a,m + aje = g(t or
b,p + b,u + byp = §(t) where the ai's, bi's, g(t) and g(t) are the .ven
known quantities, not p, m, e, u, Or p.

Case 1

Assume that we want to impose the analytical boundary condition in terms
of the conservative variables. (We use the term "analytical boundary condi-
tions" as the boundary conditions that are required for the partial differen-
tial equation.) The boundary is assumed to be at the left of domain and the
flow direction is from left to right. Thus the number of positive eigenvalues
(equal to the number of analytical boundary conditions) and negative eigen-
values 1s known. The procedure to check for well-posedness consists of two
steps. First we reorder (BS5) as

wI Q Q, UI

II 11
W Q, q,/\U

where WL and WIl are the characteristic variables corresponding to positive
and negative eigenvalues of A, respectively. And ul corresponds to the
proposed analytical boundary condition variables and ull represents the rest
of the variables. Second, we have to check whether Q:l exists or Q, is
emgty. Thus the necessary and sufficient condition for well-posedness is

Q,~ exists or Q, 1s empty.

Similarly, if we want to impose the primitive variables as analytical
boundaries, we can reorder (B4) as

Wt 3, a,\0f
wII 63 Q ﬁII

I

where well-posedness here means 6:1 exists or 6“ is empty. .

Therefore, under a type of inflow-outflow condition, once we have decided
on a set of analytical boundary conditions, the way to check for well-posedness
of (Bl) or (B2) is to see if the determinant of (Q,) or~(64) is equal to zero
or not. The following are the determinants of Q, and Q, (if it is not empty)
for various choices of inflow, outflow conditions. Again, we want to empha-
size that the boundary is assumed to be at the left of the domain. Therefore,
we only need to investigate the determinant of Q, (or ,)- The form of a
Q, (or Q,) depends on how we order the variables in wIl'and oIl (or all),
which digfer by a change of rows and columns or both; but the absolute value
of the determinants are the same.
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Pure supersonic: (u > ¢

for inflow and
Primitive variables:

-¢c <u <90

for outflow):
inflow — There are three positive eigenvalues.

Thus Qu
Det (§,) = Det(T™%).

outflow — There are no positive eigenvalues.
do not have to impose any analytical boundary condition.
Note that

require three analytical boundary conditions,
Primitive variables:

We
is empty.

Conservative variables:

v We
. Thus~ Q, = T-! and
Det (Q,) means determinant of Q.
primitive variables.

The situation is the same as in the case of
Therefore, the well-posedness conditions are to impose
all three variables for the supersonic inflow case and none for the supersonic
outflow case.

Subsonic outflow:

(-c < u < 0): There is one positive eigenvalue. We
require one analytical boundary condition. Therefore, we can propose the fol-
lowing three choices.

Primitive variables:

analytical boundary condition — p
1 0 . 1
Qg = DEt(QL’) = - —
1 V2

0 - —
v‘lz_
Primitive variables:

analytical boundary condition — u

R
~ Co 1
Q, = Det(Q,) = ——
0 1 /Eboco
VZo ¢,

Primitive variables:

analytical boundary condition — p

_ 1

Thus, imposing any one of the variables
posed condition.

p, u, or p will result in a well-
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Conservative variables: analytical boundary condition — e

. (v = Duy,? (v - Du,
2C°2 C02
Q, = .

U (v = Du, -1 (I = Yy,
+ +

/fbo Z/Eboco /Ebo /Eboco

{
, ) (r = Dug? (v - Duy? .
Det(Q,) = + -

Vfbo Z/Eboco 2/§boc02 -

Conservative variables: analytical boundary condition — m

L S
2c°2 " Co
Qy = ’
R A M AN
' /fbo 2¢§boco V2o ¢

o-0

(v = D(cy + uy)

/5boc02

Det(Q,) =

Conservative variables: analytical boundary condition — p

(v - Dugy -y - 1)
Tz 2
Co Co —( 1
Q, = _ . Det (Q,) = —XL = 2 ) -
-1, (I = Y)u, Gy - 1) 4 /Ebocoz
/5b0 /fboco /Eboco-

Again, for well-posedness, imposing any one of the variables p, my, Or e will
result in a well-posed condition, .

R

" Subsonic inflow: (0 < u < ¢):

Primitive variables: analytical boundary conditions — u, P

6473 0 = Det(éu) . + . not well-posed
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Primitive variables: analytical boundary conditions — o, P

q, = = = Det(@,)

V2
Primitive variables: analytical boundary conditions — p, u

Q, = —— = Det(3,)
Y VT e *

(oD}

In this case imposing u and p will produce an jll-posed problem.

Conservative variables: analytical boundary conditions — m, e

u,  (r = Du?
Q, = +— = Det(Q,)
/ibo 2v2poc0

Conservative variables: analytical boundary conditions — p, e

-1 (I - vy,
Q, = + = Det (Q,)
Y2p ¢

o] 0" 0

Conservative variables: analytical boundary conditions — p, m

Q, = x=-1 _ Det (Q,)
Y204c,

In this case, imposing any pair (p,m), (p,e) or (m,e) will result in a
well-posed condition. From the above examination, the only analytical boundary

condition set that produces an ill-posed problem is (u,p) for the subsonic
inflow case.

Case 2

In this case, we only can impose the characteristic variables correspond-
ing to the positive eigenvalues of A (or A) in order to obtain a well-posed
condition.

For supersonic inflow, we can specify all three characteristic variables
w,s W,, and w,, that is,

1 o~
P - "_2'P = gl(t)
Co
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1
—u
V2

1

-—u

V2

for the primitive-nonconservativ

(v = Du
- 2¢,.?

o}

+

p =g,(t)
/3o ¢ 2

o0

+

P = &,(t)
/Z—DOCO

e form (l1) or comservative form (9), and

, -
o (v - Uuo] [Y -1
pt|———|no - e =g (t)
]| =e-s,

+ p +

[ 5, (- Dyl T
2/§boco

e o

L =y (v - 17
+ m+ ——— e =g, (t)
/Ebo /fboco 4 /Ebbco 4

+ p +
/Ebo 2'/E-poco J

2~ o
[ ug (y - l)uo

for the conservative form (eq. (
are supposed to be specified.

M
It

- (1 = Y)u,] _ 1y ]
1 . °l o + [%I___ll. = g, (t)

o] 070 e l/Z_DC)CO 4

9)) where gi's and gy's are the values which

For subsonic inflow, we only can specify w,; and w,, that is,

1

- u

/2
for system (11) or (9) and

[1_(

2
2(.'.0

Y - l)uo2

1 =
- — = t
pP-TzP g,(t)

- + p +
/Ebo Z/Eboco
for system (9). Again the g;'s
be specified.

)
+—Lp =g,
/Eboco
(v - l)uo- r( _ 1)—
p+—2—m——1—2—e=g1(t)
o i L % ]
(1 - v)u,] T ‘
L + ° m + FLI—:—LL e =g,(t)
/5bo /5boco . -/Eboco -

and gy's are the values which are supposed to
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APPENDIX C

EXAMPLES OF THE THEORY OF GUSTAFSSON, KREISS, AND SUNDSTROM
(NORMAL MODE ANALYSIS)

Here we briefly review the stability theory of Gustafsson, Kreiss, and
Sundstrom for the initial boundary value problem of the hyperbolic type for
the leapfrog method. Please refer to their original paper (ref. 9) for more
details.

Consider the following equation

Ju Ju
Er i 0 0<gx<l,t20 (Cl)
u(x,0) = f(x)

In addition to equation (Cl), we specify boundary conditions

u(0,t) go(t) if c >0

u(l,t) = g, (t) if c <0
But, numerically, one needs boundary conditions at both x = 0 and x = 1.
Therefore, a separate procedure is used to determine the numerical boundary

conditions.

Let us solve (Cl) by the leapfrog scheme with At as the time-step, and
A% . as the mesh spacing. We will use the notation

vjn = v(jix,t) = u(jbx,t)
t = nit
Assume for the moment c = -1, 0 € x < =, and approximate (Cl) by
n+l1 _  n-1 At o1 _ o 0 -
Vj = vj + i (vj+1 vj_l) (C2a)
vj° = £(jax) {C2b)

and the numerical boundary condition at x =0 by
v =y (€3)

The Gustafsson et al. stability theory for this case seeks a general solution
of (C2a) and (C3) of the form

57



for appropriate complex scalars z and x. This substitution is made in both

the difference scheme in the interior and on the boundary. The basic scheme

(C2a) is assumed stable for the Cauchy problem, that is, (At/Ax) = A < 1 for
the interior points.

By substituting vj“ = znﬁj(x) into (C2a) and (C3), we obtain
V, , = —— vV, =V = j=1,2, ... (C4a)
Vo =V, (C4b)

Equation (C4) is defined as the resolvent equatiom.

Letting the solution of (C2) be anj, we obtain the characteristic equa-
tion for (C2) as

KE = —=——xk =1=20 (C5)

A necessary and sufficient condition for stability of the IBVP is that
(C4) have no nontrivial bounded solutions

PIRIALEE

5=

with Zz[ 2 1. An eigenvalue to the associated equation (C4) is defined as a
nontrivial solution to (C4) with bounded vy = «J(|«| < 1) and lz] > 1. &
generalized eigenvalue to the associated (CZ) is defined as a nontrivial solu- -
tion to (C4) with v; =«3, and |«| =1 and |z| =1, such that all solu-
tions Zz,< of (C5) with |[Z] > 1, and sufficiently close to 2z and «, have
|| < 1. The equivalent necessary and sufficient condition for stability is
that the associated (C4) have no nontrivial eigenvalues or generalized
eigenvalues.

Ty

The stability analysis consists of the following four stages:

1. The order d (d = 2 1in this case) of the resolvent (difference)
equation (C4a) determines the general solution of vj(x) — a linear combina-
tion of d solutions

vV, = ¢, K 3 + c

h| k|
1 1K1 2Ka + .. .+ c,c

d'd

where the Ki's are the roots of (C5).
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2. The root structure of (C5) determines the type of solution for Gj(x).
In this case the roots of (C5) have the following properties (see ref. 9 for
detail). If [z| > 1, then lxi| <1 and }K2| > 1, This is an immediate
consequence of the Cauchy stable scheme of (C2a). If z = elf, then

ley] > 1, Jkp| > 1 for |sin 8] > A
e, ] = lk,| =1 for |sin 8| < A
kK, = =1, x, = 1 for 6 =0
kK, =1, x, =-1 for b =7
Ky =, =21 for sin 9 = %}

3. The assumption that the interior scheme (C2a) 1s Cauchy stable helps
delete the unbounded solutions of v; — all solutions with |[x,| > 1. The
theory says that the general bounded solution of (C4a) is then

V. = c.x,d
j 2{: iti

<2

From lemma (5.1) of reference 9, only one root of the quadratic (C5) has
modulus less than one. When Izl = 1, one or both of the roots of (C5) may
have modulus one. If this is the case, the «,; for the general bounded
solution of (C4a) is defined by continuity to be that root which is the limit
of the root «(2), |x(2)] <1 for |2| » 1, as |%z] » 1. Thus

5 h|
V., = ¢,k
i 1K1

4. After substitution of v; = xJ in (C4b), if there exists a nontrivial
bounded solution for ]z| > 1, the difference schemes (C2a) and (C3) will be
unstable. 1In this case

(k - 1) =0 (C6)

Therefore, when x =1, (C5) and (C6) have a nontrivial solution with =z = -1.
From item (2) above we know that this is a generalized eigenvalue and thus
stability is violated.

In many instances, the root structure of the characteristic equation (CS5)
is difficult to analyze. Another way of testing for generalized eigenvalues
is as follows:

With z = -1, we want to find out whether x =1 1is «, or x,. We
therefore make a perturbation calculation, and study (C5) in the neighborhood
of z=-1. let z=-1-5,8>0 and x =1+ ¢ with §&,e small. From
(C5) we get
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2 2 2
zc -1 z° -1
Lzt ( 2 ) + 4
K 2

2 _ - 2 _ 2
(1 +6) L, (1 + 6) 1] +4

-A(l+ 8) B L =A(1+8)
E1,2= 2 -1

Since § > 0, at least one of the €4, 1 = 1,2 1s negative, and « =1 + ¢
is «;, not « . Therefore 2z = -1 1is a generalized eigenvalue and thus
stability is violated.

Now, consider using

vn+1 =y " (C?)

instead of (C3). The equivalent of equation (C6) becomes
(z - k))e, =0
For izlf <1 and |z] 21
lz -k | >0

Thus, (C2a) and (C7) constitute a stable difference method for the right half-
plane problem.

Stability of some other explicit and implicit schemes; using the above
approach, can be found in Oliger (ref. 15), Gottlieb and Turkel (ref. 24),
Sloan (ref. 23), and SkSllermo (ref. 21). For multistep schemes, the stability
criteria of this method are often very difficult to verify. Here, we are
going to discuss an unconditionally stable scheme in which we use it for the
quasi-1-D nozzle problem. Let us solve (Cl) by backward Euler in time and
central difference in space. The numerical boundary condition at x = 0 1is
by linear extrapolation

n+1 n n+1 n+1 At
AR x(vj+1 - vj_l) . A= (c8a)
n+1 n+l n+1 ' .
vy = 2v1 - v, _ (C8b)

The characteristic equation of (C8a)
k(z = 1) = Az(x? - 1) (c9)
and the boundary scheme (C8b) satisfies

(k = 1)2 =0 = k=1 (C10)
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The Cauchy stability of (C8a) implies that the roots «x; , of (C9) satisfy

|K1] <1, e, | > 1 for [z} > 1

2|

The only problem is that
z = ] when k =1

Therefore, we have to prove whether there is any generalized eigenvalue

(J. Oliger and B. Gustafsson, private communication) for (C9) and (Cl0). For
stability, we do not want IKIT > 1 from below as |z| = 1 from above.
Therefore we want to find out if «x, = 1. Let z =1+ &, § >0, and

x =1+ ¢ with §&,e small, we get

(1 +e)(1 +6 -1)

ML+ [ + ) - 1]

- re(2 + ¢€)
(1 +¢€) - xe(2 + ¢€)

Since & > 0, this implies ¢ > 0; thus, xk =1 + ¢ 1is «x,;, not «,. There-
fore z =1 1is not a generalized eigenvalue, and the entire scheme is
unconditionally stable.

By applying the same procedure, it can be shown that the boundary approxi-
mation (C8b), that is, spatial linear extrapolation, together with the interior
schemes (a) central difference in space and (b) two-step backward Euler in
time, form an unconditionally stable scheme for the model equation (Cl).
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APPENDIX D

MATRIX METHOD AND POSITIVE REAL FUNCTION METHOD

Consider a scalar hyperbolic equation:

Ju Ju
E+C§=0 0zxz21l,t20

u(x,0) = £(x) c >0 (DL)
u(oyt) = g(t)

The above equation constitutes a well-posed problem. Let vy = v(jAx,t) be
the difference solution of (Dl) at x = jAx, where Ax 1is the step size.

" Let us discuss the method of lines approach by using central difference in
space. We will examine the stability of this difference scheme by the matrix
method (ref. 29) and by the positive real-function method (ref. 30) for fixed
AX.

A word of caution: these methods only show the stability of the ODE for
a fixed Ax, In order to show that the original PDE is stable, the related
ODE has to be stable as 4Ax + 0. That 1Is, additional analysis is required.
The additional requirement involves the analysis of infinite dimension
matrices. Here, we only show the method for fixed Ax, and want to point out
that stability of the ODE for fixed 4Ax does not rule out the possibility
that the ODE might become unstable as Ax —+ 0.

By central differencing in space, (Dl1) becomes-

dv v -v :
j j+1 j=1¥y _ - _
It + c( o ) =0, j=2, .. .,1 1
dv, v,
L I -4 I =
i * C(ZAX) °(2Ax 0, 3=1

At the right boundary (the numerical boundary) we use the backward difference
scheme,

av v, -V

J-1

and, therefore, we have
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In matrix notation

g—‘t’ - 2% Av + B(t) (D2)

with

If the real part of all the eigenvalues of A are negative, we can apply a
stable ODE solver to integrate (D2). The particular type of ODE solver

depends heavily on the spectrum of the eigenvalues of A, that is, on the
stiffness of the system. The matrix A cannot be transformed to a diagonally
dominant matrix with all its diagonal elements positive. We cannot get an
explicit bound for 4x. We have to actually compute the eigenvalues of A.
Gary (ref. 29) has shown that A is a stable matrix for various mesh spacings.

We now turn to the use of positive real functions in an investigation of
numerical stability of (D2) with fixed 4x. For details of the theory, please
refer to Dahlquist's original paper (ref. 30) on this subject.

Let z = (24x/c)X, with X the eigenvalues, N the dimension of A, and

DN(z) = det(zI - A) =0

Then Dy(z) is of the form

z 1 0
-1 z 1
-1 z 1
DN(z) =
-1 z 1
-2 z + 2
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It is easy to see that

v
(%)

Dn+1(z) = an(z) + Dn_l(z) n

If it turns out that Dj(z) # 0 for Re(z) > 0 and that imaginary zeros
are simple, then for each n, all solutions of the ODE's are bounded, and any
A-stable method can be used for the integration in time.

Let
Dn
b =
n Dn-l
then
¢ =z + L n>3
n+l n =
n
z 1 0
-1 z 1
D3(z) 0 -2 z + 2
¢3 = =
D, (2) z 1
-2 z + 2
or
z + 2
baTEtiE v v 2 ©3)
Since

0 z = =2

D,(z) =z + 2
D,(z2) =2z2(z+2) +2 =20 z=-1z%1

have their only zerces in the left half-plane, it 1is sufficient (though not
necessary) to show that ¢,(z) are positive functions for n > 3. Let us look
at the second part of (D3). Recall that for an arbitrary complex number W
that if Re(W) > 0 then Re(W !) > 0. Since

+ +
fa) = HEELEE v o

is a positive function, it follows that ¢, 1is a positive function. By apply-
ing the proof by induction, we can easily show that ¢,.,, for n 2 3, are
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positive functions. Thus, the central scheme is stable for ¢ > 0 for fixed
L%
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APPENDIX E
SUFFICIENT STABILITY CONDITIONS

From the discussion of well-posedness of hyperbolic initial boundary value
problems, no new difficulties arise i1f we have smooth variable coefficients
and quasi-linear equations with smooth solutions. We will concentrate on a
general strictly hyperbolic constant coefficient system with well-posed coupled
boundary conditions. With this system in mind, we will give a detailed
description in the following order: (1) the basic idea, (2) dissection of the
problem, (3) reduction of the system to scalar equations, and (4) sufficient
stability conditions.

Basic Idea

The sufficient stability conditions only involve properties of methods
for related Cauchy problems. We want stable schemes for the related Cauchy
problem applied at the interior, and stable and uncentered dissipative schemes
for the related Cauchy problem applied at the boundary. The stabilities of
the related Cauchy problems are usually known or can be verified by standard
techniques. The main theories behind these are based on the Cauchy stability
of the composite method, and the matching of stable schemes, which has been
examined by Ciment (ref. 13) and Oliger (ref. 15). The usefulness of these
results is fourfold: (1) stability can be easily verified by standard tech-
niques; (2) the result can be used to guide us in the construction of stable
methods for the entire problem; (3) the Cauchy stability of the composite
method is especially useful and efficient for higher order schemes; and (4) the
result can help to simplify the verification of the necessary and sufficient
conditions tremendously if the use of higher order schemes is desired.

Dissection of the Problem

We will discuss the approximation of the well-posed strictly hyperbolic
system

\
v, + wa =0 0<x<l,t2>0
w(x,0) = £(x)
[ (ED)
L,w(0,t) = £,(t)

Lw(l,t) = £,(t) J

where A 1s a N x N constant matrix, and L; and L; are rectangular
matrices. After an appropriate nonsingular transformation T, we can trans-
form (El) into
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u, + Aux =0
(E2a)
u(x,0) = f(x)
where
Ay 0
A =
0 -A,
Ay 0 X2+1 0
A o= >0, A, = >0
0 lz 0 AN
and
ol = (u?, , uHT
uII - (u2+1’ C uN)T
u = Tw
with boundary conditions
Wl o,t) = SIUII(O,t) + g (1)
(E2b)

o, 0

I «
SIIU (l’t) + gII(t)

where S; is an x(N - &) matrix, Sy7 1is a (N - 2) x (2) matrix, and
gy = Tf;, 7 = T,

From the well-known-theorem of Gustafsson et al. (ref. 9), the stability
of the approximation for an initial boundary value problem on 0 <x<1 I1is
equivalent to the stability of two related quarter-plane problems. Therefore
we can split (E2) into the related left and right quarter-plane problems. The
related right quarter-plane problem on 0 < x <=, t >0 1is obtained by simply
removing the boundary at x = 1 and extending the definition of our initial
data and interior approximation to x = «, that 1is,

In
b
A
_8
[ad
A
o

up + Aux =0 0
u(x,0) = £(x) (E3)

ut(0,8) = sutt0,e) + 8 (0)
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The related left quarter-plane problem on -=» < x <1, t > 0 1is defined .

ut+Aux=0 = <xsl,t20

u(x,0) = f(x) E&4)
IT _ I
u - (l,t) = SIIu (1,t) + gII(t)

Therefore, the discussion of the right quarter-plane problem (E3) is suffi-
cient for our purpose. The analysis of (E4) is similar.

Reduction of the System to Scalar Equations

We want to solve system (E3) using finite difference schemes. Divide the
x-axils into subintervals of length A4x and the t-axis into subintervals of
length At. Denote the grid points by Xy = jox and grid functions by
vi(t) = v(xj,t), t = nAt and approximate (using one step in time for illus-
tration; theory holds for multistep) (E3a) in the interior of the domain by

p
vj(t + At) = Aivj+i(t) j=r,r+1, r+2, ... (E5)

i=-p

where p 1is the order of the spatial differencing for the interior scheme,
and the approximation grid points are defined as in figure 12 (without the
right boundary present) and Ay are fixed N x N diagonal matrices.

LEFT RIGHT
BOUNDARY BOUNDARY
POINTS INTERIOR POINTS POINTS

F‘
| by L1 !
O---r-Trrtt-—-————— —— — —— - — J J+1=- - =J+K

Figure 12.- Grid point definition

For the outflow unknowns (variables with negative eigenvalues), we
approximate the boundary conditions by the following uncentered scheme

s ] s
E : (0) II - (1) 11 - .
Cji vj+i(t + At) Cji vj+i(t) jom=0, . . ., T 1, m< j
et i (E6)
where C(g) are fixed diagonal (N - &) x (N - 2) matrices and s 1is the

order of the spatial differencing for the boundary scheme. Note that for
m = 0 the scheme is one-sided.
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The following are a few of the spatially one-sided and uncentered schemes:

B, (6) vy, (8) - vy ()

X Ax
Bv.(t) — v, (t) +2v,. (t) - 2 v,(t)
i . _2 j+2 {41 2 '
ox Ax
ij(t) . -vj+2(t) + 6vj+1(t) - 3vj(t) - 2vj_1(t)
9x 64x

The first two are one-sided and are of order of accuracg Ax and Ax?, respec-
tively. The last one is uncentered and is of order 4x".

For the inflow part (variables with positive eigenvalues), we have the
analytical boundary condition

vl = sty + g (@ | (E7)
together with r - 1 additional approximations of the form
I i& 11
t) = +
vy () = 32 DyviT(e) + gy(©) (E8)

where D4y are fixed x(N - £) matrices, q 1s a positive integer, and the
gj(t) aré vectors depending on Ax and gy(t). See Goldberg and Tadmor
(tef. 14) for derivation of (EB).

Since the Aj are diagonal, we can split the scheme (E5) into its inflow
and outflow parts (ref. 14):

p
I I.I
vj (t + At) E Ai vj+i(t) j ryr+1, ..,
i=-p
(E9)
P
II IT_ I1
vj (t + At) E Ai vj+i(t) 3j r,r+1, . ..
i=-p
where
I
Ai 0
A -
i
I1
0 Ai
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Now we can see that equations (E5) and (E6) can be partitioned into the -
lowing problems

P
vj(t + At) = E Ai vj+i(t) 3 r, r+1,
1=-p .E10a)
vt (e) = svat(e) + g () (E10b)
q
I,y . Z I . _
vj (t) = Djivi (t) + gj(t) i 1, . . ., r 1
i=0 (E10c)
p \
II IT II
vj (t + At) E Ai vj+i(t) i r, r+1l,
=p
y (E11)
S S
(o) II Z (1) 11 . _ .
Cji vj+i(t + At) Cji vj+i(t) m, j 0, . . ., r I, m<j
{=—m i=-m ]

The outflow problem (Ell) is self contained, while the inflow problem
(E10) depends on the outflow part to the extent that the outflow computations
provide the inhomogeneous boundary values in (E10b) and (El0c). Therefore the
stability of the right quarter plane under the above approximation is equiva-
lent to the following two separate parts,

1. Stability of the inflow problem (E10) with inhomogeneous boundary
values

2. Stability of the outflow problem (Ell)
Since all the A; and c§i), c§i) are diagonal matrices, the inflow prob-
lem splits into 2 independent approximations and the outflow problem splits
into (N - %) independent approximations. Similarly, we can split our left
quarter-plane problem into the equivalent form. Therefore, the stability
. study of a system of the form (El) reduces to a study of a single scalar equa-
tion with two related quarter-plane problems as follows
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u, +cu, = 0 0
u(x,0) = £(x) t
u(0,t) = EI(t)

-0

ux+cux-0

u(x,0) = £(x) t
For ¢ > 0, or
u_ + cug = 0 0
u(x,0) = £(x) t
u, +cu, =0 -®
u(x,0) = £(x) t
u(l,t) = g;.(t)
For ¢ <0

v

20

IA

v

0, c

s C

0, c

0, ¢

)
>0

| (E12)
>0}

L
<0}

4

(E13)

Sufficient Stability Conditions

Let us assume
approximations to equations (El12).
before

P
vj(t + At) = Z Aivj+i(t)

iwp
vo(t) = g ()
vj(t) = gj(t) if r>1
vj(t 4+ At) = z Aivj+i
jm—p
m
(0) (1)
Z G Vyaa (8 ¥ 88 = 2, €3y vyt ()

im—g {m-g
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¢ > 0, and discuss stability analysis of difference
Using the same difference approximation as

r, r+1,

\ (ELl4)
1' . " ey r - 1

!
J (El5a)
J+1, .. ., J+K (EI5D)

m+J << J+K



where the approximation grid points are defined as in figure 12 (without the
left boundary present), and the Ay, Cy1 are now scalar constants and gg(t)
are obtained by Taylor series expansions of the solution in the neighborhood
of the boundary in terms of the physical boundary data gr(t). This has been
shown to acquire the desired accuracy of order d 1if the data is sufficiently
smooth. The form of gj(t) is as follows:

d
i .1
(jax)” 3 d+1
g () = E Jﬁ?—a-—xiu(o.t) + 0(axdt?)

i=0

d
i i
PRy ik g, (6) + 0(ax?*)

i
{=0 de

In (El&%) vj(t), =1, ..., T -1 can be approximated or extrapolated
by other uncentered methods (see Oliger, ref. 15). But a stability proof will
be more complicated. Now, the stability of the inflow, right quarter-plane
problem (El4) is an immediate consequence of the stability of the interior
approximation, so the stability discussion will only deal with the outflow
left quarter-plane problem (E15). We need the following definition and
assumptions:

Definition: An approximation is said to be Cauchy stable if it 1is stable
for the related Cauchy problem.

Assumptions: (1) We assume that our interior approximations and boundary
approximations are stable for the related Cauchy problems; (2) we assume our
boundary approximations are dissipative (or at least one of the scheme is dis-
sipative).

The sufficient conditions rest on the following three results:

1. The theory of matching of stable schemes (Ciment, ref. 13; Oliger,
ref. 15).

2. The theory of successively constructing éauchy stable methods — com-
posite method (Oliger, ref. 10).

3. The theory of Gustafsson et al, (ref. 9) — 1if the method is Cauchy
stable, then it is stable for the left quarter-plane problem.

Matching of stable schemes- If a Cauchy. stable scheme of the form (E15a)
is used for all j g n, and a Cauchy stable dissipative approximation of the
form (E15b) is used for all J > n,, the resulting approximation is Cauchy
stable. This is based on the result of Ciment and Oliger's theorem on the
matching of stable schemes. The result depends solely on the Cauchy stability
of both methods and the dissipativity of at least one method. The result is
best illustrated by figure 13.
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-+
.
4

|

CAUCHY STABLE CAUCHY STABLE AND
SCHEME DISSIPATIVE SCHEME
Y

J

COMBINED CAUCHY STABLE SCHEME

Figure 13.- Sufficient condition.

Successively constructing Cauchy stable methods- By applying the previous
method of "matching of stable schemes” on ny = J (see fig. 12), with scheme
(E15a) for 3 £ J and scheme (E15b) defined for j =J + 1 for all
j 23+ 1, the combined scheme is Cauchy stable. We can construct a second
composite method using the one we have just constructed with scheme (El5a) for
j «J + 1 and the scheme (E15b) defined for j = J + 2 for all j 2 J + 2.
This in turn again is Cauchy stable by the method of matching of stable
schemes. We proceed in this way until we get to j = J + K. This is illus-
trated by the diagram in figure 14,

Theory of Gustafsson et al.- By successive construction of a Cauchy stable
scheme using the composite method, and the assumption we made for (El5), the
result of Gustafsson et al. (ref. 9) says that the left quarter-plane (outflow)
problem is stable.

Therefore, the key to constructing stable schemes for the initial bound-
ary value problem for the hyperbolic equations is to have Cauchy stable schemes
for the interior points and the boundary points, and at least ome of the
schemes 1s dissipative. -
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J 1 2 3+K

STEP 1 CAUCHY STABLE CAUCHY STABLE AND DISSIPATIVE SCHEME
a}) '

SCHEME (Eq. E15 (

STEP2 CAUCHY STABLE SCHEME
OF COMPOSITE METHOD —=———°

FROM STEP 1

STEP K+1

{ Eq. E16 (b)) DEFINED FOR j = J+1

CAUCHY STABLE AND DISSIPATIVE SCHEME
(Eq. E15(b) ) DEFINED FOR j = J+2

WK1 HK
CAUCHY STABLE SCHEME CAUCHY STABLE AND
DISSIPATIVE SCHEME
OF COMPOSITE METHOD (Eq. E15 (b)) DEFINED FOR
FROM STEP K .
j=J+K
A J
Y

U

COMBINED CAUCHY STABLE SCHEME

Figure l4.- Successively constructing Cauchy stable methods.
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